
Embedded Coder® Release
Notes

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Embedded Coder® Release Notes

© COPYRIGHT 2011–2013 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Contents

R2013b

Code Generation from MATLAB Code 2
Software-in-the-loop verification for MATLAB Coder 2
Custom generated identifiers for emxArray utility
functions . 2

Model Architecture and Design . 4
Enhanced modeling of AUTOSAR runnables and modes,
and improved ARXML import of internal behavior 4

Reorganization of Model Advisor Embedded Coder
checks . 7

Model Advisor fixed-point checks with additional coverage
and optimization awareness . 7

Protected model Web view . 8
RTW.AutosarInterface class to be removed in a future
release . 8

Subsystem methods of arxml.importer class to be removed
in a future release . 9

Data, Function, and File Definition 10
Simplified global types file rtwtypes.h with invariant
content . 10

C++ encapsulation support for name space control and
template-based file customization 11

Shared utility naming control . 12
Expanded support for identifier names 12

Code Generation . 14
Support for AUTOSAR release 4.0.3 XML and generated
code . 14

Indent style and size control for code generation 14
Subsystem functions return value in generated code 14
Model reference step function void input and output
arguments . 15

iii

Deployment . 16
ARM Cortex-M optimized code with STM32F4-Discovery
board example . 16

Wind River VxWorks 6.9 support . 17
Support package for Texas Instruments C2000
processors . 18

Coder Target pane in Configuration Parameters dialog
box . 19

ZedBoard hardware support . 21
Simplified multi-instance code interface and dynamic
memory allocation for ERT targets 22

Performance . 24
Reusable custom storage class to reduce root I/O
memory . 24

Subsystem functions reused independently of output
connection . 24

Verification . 25
SIL and PIL support fixed-point data types wider than 32
bits . 25

SIL and PIL protected model support 26
Code execution profiling improvements 26
Check bug reports for issues and fixes 28

R2013a

Code Generation from MATLAB Code 30
Improved code replacement traceability for MATLAB code
generation . 30

Static code metrics report for MATLAB Coder 30

Model Architecture and Design . 32
AUTOSAR user interface and round trip ARXML file
import and export improvements 32

Code generation for variable-size scalar signals 35

Data, Function, and File Definition 36

iv Contents

Shortened system-generated identifier names 36
Improved data initialization with custom storage
classes . 36

Default specification for global types 37
Subsystem block parameter Function packaging option
renamed . 37

Code Generation . 38
Model Advisor checks for code generation 38

Deployment . 39
Concurrent execution API to target embedded multicore
platforms . 39

Hardware configuration relocation from Target Preferences
block to Configuration Parameters dialog box 40

Downloadable support and blocks for Analog Devices
DSPs . 42

Texas Instruments C2000 Clocking Options 43
Support for Texas Instruments C2802x and Texas
Instruments C2803x variants . 44

Downloadable support and blocks for Xilinx Zynq-7000
platform . 44

Support ending for Eclipse IDE in a future release 45
Support ending for remoteBuild method in a future
release . 45

Performance . 46
Optimized function arguments for nonreusable
subsystems . 46

Reduced data copies for tunable parameter expressions . . 46
Removal of unused global variables 47

Verification . 48
Debugging during SIL simulations 48
Simulation of multiple SIL Model blocks in a top model . . 48
API for testing rtiostream communications 48
SIL and PIL support for targets with multicore
processors . 50

Additional code annotation for justifying Polyspace
checks . 50

Code execution profiling improvements 50

v

Code-to-model traceability links for reusable subsystems in
libraries . 52

Check bug reports for issues and fixes 53

R2012b

Cyclomatic complexity measurement in static code metrics
report . 56

Custom code substitution for MATLAB functions using code
replacement libraries . 56

SIL and PIL support for signal logging, encapsulated C++,
and AUTOSAR calibration parameters 57

AUTOSAR 4.0 nonscalar data support 58
Code annotation for justifying Polyspace checks 59
Texas Instruments Code Composer Studio IDE 5.1
support . 59

External mode support for ERT targets with static main . . 60
Downloadable support for Green Hills MULTI 60
Support for Texas Instruments C2806x processors 61
Performance enhancement of Simulink data objects 62
AUTOSAR software component import and export
enhancements . 64

Highlight virtual blocks in model Web view of code
generation report . 65

Code Execution Profiling Improvements 65
Incremental Compilation with Changes in Code Coverage
Settings . 69

Check bug reports for issues and fixes 70

R2012a

AUTOSAR Enhancements . 72
Code Efficiency Enhancements . 72
Enhancements to Custom Storage Classes in Simulink and
mpt Packages . 75

Code Generation Report Includes Simulink Web View . . . 75
LDRA Testbed Code Coverage Annotations in Code
Generation Report . 76

Generated Identifiers Enhancements 76

vi Contents

Code Replacement Enhancements . 77
SIL and PIL Enhancements . 80
Changes for ERT and ERT-Based Targets 84
Changes for Embedded IDEs and Embedded Targets 86
New and Enhanced Demos . 87
Check bug reports for issues and fixes 89

R2011b

Static Code Metrics in Code Generation Report 92
AUTOSAR Enhancements . 92
SIL and PIL Enhancements . 93
Generate Multitasking Code for Concurrent Execution on
Multicore Processors . 95

Changes for Embedded IDEs and Embedded Targets 95
Saturation Control of Stateflow Data 98
Custom Storage Class Properties for Managing Data
Ownership and Definition . 99

Export Data Declarations to Shared Header File for Code
Generation with Model Reference 100

Target Function Library Code Replacement
Enhancements . 101

Code Generation Enhancements . 103
Enhanced Code Generation Optimization Using Minimum
and Maximum Values . 104

New Model Advisor Check for Code Efficiency of Logic
Blocks . 105

Control of Default Case Generation for Switch Statements
in Generated Code for Stateflow Charts 105

Improvement to Build Process for Conflicting Identifiers . . 107
Update to Code Generation Verification Class

cgv.Config . 107
License Names Not Yet Updated for Coder Product
Restructuring . 107

New and Enhanced Demos . 108
Check bug reports for issues and fixes 109

vii

R2011a

Coder Product Restructuring . 112
Data Management Enhancements and Changes 117
AUTOSAR Enhancements . 120
SIL and PIL Enhancements . 122
Code Generation Enhancements . 123
Code Generation Verification (CGV) API Updates 125
MISRA-C Code Generation Objective 129
New Model Advisor Check for Code Efficiency of Lookup
Table Blocks . 129

Enhanced Code Generation Optimization 130
Target Function Library Replacement Based on
Computation Method for Reciprocal Sqrt, Sine, and
Cosine . 130

Target Function Library Support for abs, min, max, and
sign functions . 131

C++ Encapsulation Allowed for Referenced Models in For
Each Subsystems . 131

Improved Code Generation for Portable Word Sizes 131
Improved Comments in the Generated Code 132
Replacement Data Types and Simulation Mode for
Referenced Models . 132

Changes for Embedded IDEs and Embedded Targets 132
Changes to ver Function Product Arguments 141
New and Enhanced Demos . 142
Check bug reports for issues and fixes 143

viii Contents

R2013b

Version: 6.5

New Features: Yes

Bug Fixes: Yes

1

R2013b

Code Generation from MATLAB Code

Software-in-the-loop verification for MATLAB Coder

Use software-in-the-loop (SIL) execution to verify production-ready source
code. SIL execution involves compiling and running static library code on
your host computer. Through SIL execution, you can reuse test vectors
developed for your MATLAB® functions to verify the numerical behavior of
static library code.

Previously, verification was restricted to code generated for execution only
within MATLAB. Now, in MATLAB, you can compile and run standalone code
on the host computer through a MATLAB SIL interface.

You can run a SIL execution:

• Using the MATLAB Coder™ project interface. See “Software-in-the-Loop
(SIL) Execution Through the Project Interface”.

• From the command line. See “Software-in-the-Loop (SIL) Execution From
the Command Line”.

Custom generated identifiers for emxArray utility
functions

You can customize generated identifiers for emxArray (embeddable mxArray)
utility functions. When you generate code that uses variable-size data, the
code generation software exports utility functions to interact with emxArray
data structures. Customize utility function identifiers to avoid name collisions
when a function that uses variable-size data calls a library function that
uses variable-size data.

To customize generated identifiers for emxArray utility functions:

• In a project

On the Project Settings dialog box Code Appearance tab, under
Identifier Format, in the EMX Array Utility Functions field, enter the
identifier format. For example, 'myemxMN'.

2

Custom generated identifiers for emxArray utility functions

• At the command line

Create a code generation configuration object and set the
CustomSymbolStrEMXArrayFcn parameter to the identifier format. For
example:

cfg = coder.config('lib');
cfg.CustomSymbolStrEMXArrayFcn='myemxMN';

For details about the identifier format, see coder.EmbeddedCodeConfig.

3

R2013b

Model Architecture and Design

Enhanced modeling of AUTOSAR runnables and
modes, and improved ARXML import of internal
behavior

R2013b enhances AUTOSAR modeling, component import, and programmatic
control. See also “Support for AUTOSAR release 4.0.3 XML and generated
code” on page 14.

Enhanced modeling and simulation of AUTOSAR multiple
runnables
In previous releases, AUTOSAR multi-runnables were modeled as
function-call subsystems within a wrapper subsystem in a Simulink® model.
To generate code, you right-clicked the wrapper subsystem and exported
functions.

Beginning in R2013b, you can model AUTOSAR multi-runnables as
function-call subsystems at the top level of a model, without having to use a
wrapper subsystem. When you generate code for the model, each function-call
subsystem representing a runnable appears in the model C code as a callable
model entry-point function.

You can simulate multiple runnables in an AUTOSAR software component in
multiple simulation modes. For example:

• For a periodic runnable, you can edit the properties of the function-call
subsystem inport to set the sample time for a periodic event simulation.

• For a non-periodic runnable, you can edit the Data Import/Export pane
of the Configuration Parameters dialog box to set up data loading for an
asynchronous event simulation.

For more information, see “Configure Multiple Runnables”.

4

Enhanced modeling of AUTOSAR runnables and modes, and improved ARXML import of internal behavior

Enhanced ARXML import of AUTOSAR software component
internal behavior
The AUTOSAR software component importer tool can automatically import
the internal behavior of a multi-runnable AUTOSAR software component
into a Simulink model. You can use the createComponentAsModel method
of the class arxml.importer to specify that internal behavior be imported.
For example:

>> obj = arxml.importer(`mySWC.arxml');

>> obj.createComponentAsModel('/pkg/swc', 'CreateInternalBehavior', true)

The importer:

• Adds subsystem blocks in the model and maps them to corresponding
runnables imported from the AUTOSAR software component.

• Adds signal lines in the model and maps them to corresponding
interrunnable variables (IRVs) imported from the AUTOSAR software
component.

Ability to model AUTOSAR mode receiver ports and events
R2013b provides the ability to model AUTOSAR mode receiver ports and
mode-switch events in Simulink. Specifically, you can:

• Model the mode receiver port for an AUTOSAR software component using
a Simulink inport.

• Specify a mode-switch event to trigger an initialize function runnable or
an exported function-call subsystem runnable.

For more information, see “Configure AUTOSAR Mode Receiver Ports and
Events”.

AUTOSAR dual-scaled parameter
The new AUTOSAR.DualScaledParameter class extends the capabilities of the
AUTOSAR.Parameter class. You can define a parameter object that stores
two scaled values of the same physical value. Suppose you want to store
temperature measurements as Fahrenheit or Celsius values. You can define a

5

R2013b

parameter that stores the temperature in either measurement scale with a
computational method to convert between the dual-scaled values.

You can use AUTOSAR.DualScaledParameter objects in your model for both
simulation and code generation. The parameter computes the internal value
before simulation or code generation via a computational method, which can
be a first-order rational function. This offline computation results in leaner
generated code.

Embedded Coder® also generates an XML file for use by a calibration tool.
This file contains the dual-scaled values and the corresponding computational
method.

For more information, see AUTOSAR.DualScaledParameter.

Programmatic interface for configuring AUTOSAR properties
and Simulink-AUTOSAR mapping
R2013b provides a programmatic interface for configuring AUTOSAR
properties and Simulink mapping information using MATLAB functions.
You can programmatically get, set, add, and remove the same component
properties and mapping information displayed in the AUTOSAR Properties
Explorer and Simulink-AUTOSAR Mapping Explorer views of the
Configure AUTOSAR Interface dialog box.

In the function syntax, you can use fully or partially qualified names to locate
properties. For example, the following code sets the IsService property for
the sender-receiver interface located at path Interface1 in the example
model rtwdemo_autosar_multirunnables to true. In this case, specifying
the name Interface1 is enough to locate the property.

>> propObj = autosar.api.getAUTOSARProperties('rtwdemo_autosar_multirunnables');

>> set(propObj, 'Interface1', 'IsService', true);

6

Reorganization of Model Advisor Embedded Coder® checks

If you added a sender-receiver interface to the component, you would specify
a fully qualified path, for example:

>> propObj = autosar.api.getAUTOSARProperties('rtwdemo_autosar_multirunnables');

>> addSRInterface(propObj, '/pkg/if/Interface3', 'IsService', true);

The new AUTOSAR configuration functions also validate syntax and
semantics for requested AUTOSAR property and mapping changes.

Reorganization of Model Advisor Embedded Coder
checks

Checks previously provided with Simulink in the Model Advisor Embedded
Coder folder are now available with either Simulink Coder or Embedded
Coder. For a list of checks available with each product, see:

• “Simulink Coder Checks”

• “Embedded Coder Checks”

Model Advisor fixed-point checks with additional
coverage and optimization awareness

The Model Advisor fixed-point checks now cover blocks in base Simulink and
System Toolboxes, the MATLAB Function block, System objects, Stateflow®,
and fi objects. These improved checks take into consideration model settings

7

R2013b

such as hardware configuration and code generation settings. These updated
checks also avoid false negative results.

For more information, see:

• “Identify blocks that generate expensive rounding code”

• “Identify questionable fixed-point operations”

• “Identify blocks that generate expensive fixed-point and saturation code”

Protected model Web view

In R2013b, a read-only Web view of protected models is now available.

To include the Web view in the protected model, right-click the model
reference block, and then select Subsystem & Model Reference > Create
Protected Model for Selected Model Block. Select the Open read-only
view of model check box and click Create.

To enter a password, right-click the protected model shield icon and select
Authorize. Enter the password and click OK. To show the Web view for a
protected model, right-click the shield icon of the protected model and select
Show Web view.

RTW.AutosarInterface class to be removed in a future
release
Compatibility Considerations: Yes

In R2013b, a new programmatic interface for configuring AUTOSAR
properties and mapping information for a Simulink model has replaced
the RTW.AutosarInterface class used in earlier releases. The
RTW.AutosarInterface class will be removed in a future release.

Compatibility Considerations

If you are using the RTW.AutosarInterface class and methods to
programmatically control and validate the AUTOSAR configuration of a
model, you should migrate to using the new AUTOSAR property and mapping

8

Subsystem methods of arxml.importer class to be removed in a future release

functions listed in “AUTOSAR Component Development”. The new functions
are designed to work with the component properties and mapping information
displayed in the AUTOSAR Properties Explorer and Simulink-AUTOSAR
Mapping Explorer views of the Configure AUTOSAR Interface dialog box.

Subsystem methods of arxml.importer class to be
removed in a future release
Compatibility Considerations: Yes

Beginning in R2013b, you can model AUTOSAR multi-runnables as
function-call subsystems at the top level of a model, rather than as
function-call subsystems within a wrapper subsystem that represents
the AUTOSAR software component. The following methods of the
arxml.importer class will be removed in a future release:

• arxml.importer.createComponentAsSubsystem — Create AUTOSAR
atomic software component as Simulink atomic subsystem

• arxml.importer.createOperationAsConfigurableSubsystems— Create
configurable Simulink subsystem library for client-server operation

Compatibility Considerations

If you are using createComponentAsSubsystem or
createOperationAsConfigurableSubsystems, you should migrate to using
the top model oriented approach described in “Configure Multiple Runnables”.

9

R2013b

Data, Function, and File Definition

Simplified global types file rtwtypes.h with invariant
content

Previously, during rebuilds of a model hierarchy, the code generation process
might have updated the content of the shared header file rtwtypes.h. If
a model in the hierarchy changed, or the code generator detected a new
model in the hierarchy, rtwtypes.h could be overwritten. When rtwtypes.h
changes, you must recompile the code.

In R2013b, the code generator separates some of the rtwtypes.h content into
separate header files that are generated only when certain model settings
or components are present. Separate header files are generated, however,
rtwtypes.h is unchanged. When certain model settings or components are
present, the code generator creates the following new header files.

Model setting or component Content generated to header file

Multiword data types multiword_types.h

Model reference target model_reference_types.h

Model reference blocks model_reference_types.h

“MAT-file logging” is selected builtin_typeid_types.h

multiword_types.h

C API builtin_typeid_types.h

multiword_types.h

“Interface” is set to External mode builtin_typeid_types.h

multiword_types.h

For more information on files created during code generation, see “Files
Created During the Build Process”.

10

C++ encapsulation support for name space control and template-based file customization

C++ encapsulation support for name space control
and template-based file customization

Name space control for scoping C++ encapsulated model
classes
R2013b adds name space control for scoping model classes generated
using C++ encapsulation. You can use the Namespace parameter in the
Configure C++ Encapsulation Interface dialog box to specify a name space
for a model class. If specified, the name space is emitted in the generated
code for the model class. To scope the C++ encapsulated model classes in a
model reference hierarchy, you can specify a different name space for each
referenced model. For more information, see “Use Name Spaces to Scope
C++ Encapsulated Model Classes”.

For more information on configuring C++ encapsulated model classes, see
“Configure C++ Encapsulation Interfaces Using Graphical Interfaces”.

Template-based customization of encapsulated C++ header
and source files
Embedded Coder now supports the Code Generation > Templates
pane of the Configuration Parameters dialog box for models that use C++
encapsulation. You can use the code and data templates to control the
appearance of C++ code in generated model header and source files. For
example, you can customize file and function banners to meet organization
standards.

However, the following template file features that are supported for other
language selections are not supported for C++ encapsulation:

• Free-form text outside template sections

• Custom tokens

• TLC commands (<! > tokens)

11

R2013b

Shared utility naming control

You can customize a shared utility name. On the Code Generation >
Symbols pane enter text and formatting characters in the Shared utilities
box.

The default token string is NC.

Token Description

$N The code generator inserts the
shared utility function name.

$C When the combined text and utility
name exceed the maximum identifier
length, the code generator inserts
an eight-character conditional
checksum. This checksum ensures
that the name is unique.

If the shared utility identifier exceeds the maximum length, characters are
deleted from $N and the eight-character conditional checksum is inserted.

For more information see

• “Shared utilities”

• “Identifier Format Control”

• “Exceptions to Identifier Formatting Conventions”

Expanded support for identifier names

When specifying temporary local variables, you can now use $A to insert the
data type acronym into your variable name. This capability provides you with
a more consistent naming scheme.

• You can include $A in naming for local temporary variables where
previously it was supported only for local block output variables and

12

Expanded support for identifier names

field names of global types. For more information, see “Identifier Format
Control”, “Local temporary variables” and “Field name of global types”.

• You can customize identifier names by specifying $A which maps to the
data type replacement setting. Previously the generated code changed
the types, but not the identifier names. For more information, see “Data
Type Replacement”.

13

R2013b

Code Generation

Support for AUTOSAR release 4.0.3 XML and
generated code

R2013b adds AUTOSAR release 4.0.3 support, as follows:

• ARXML import and export support AUTOSAR release 4.0.3 XML files.

• The AUTOSAR target generates AUTOSAR release 4.0.3 compliant C code.

• Selecting the value 4.0 for the AUTOSAR model parameter “Generate
XML file from schema version” now selects schema revision 4.0.3, rather
than 4.0.2. Also, the parameter now defaults to value 4.0, rather than 3.0
or an earlier version.

See also “Enhanced modeling of AUTOSAR runnables and modes, and
improved ARXML import of internal behavior” on page 4.

Indent style and size control for code generation

R2013b adds options for customizing code appearance. The following new
parameters are located in the Configuration Parameters dialog box, on the
Code Generation > Code Style pane.

• Indent style: Specify K&R or Allman style for the placement of braces.

• Indent size: Specify the number of characters per indent level. Choose
from 2–8 characters.

For more information on configuring code style parameters, see “Control
Code Style”.

Subsystem functions return value in generated code

In the Subsystem Block Parameters dialog box, on the Code Generation
tab, if you specify

14

Model reference step function void input and output arguments

• The Function packaging parameter for your subsystem to Nonreusable
function

• The Function interface parameter to Allow arguments

The code generator might generate a subsystem function that returns a scalar
output value. Previously, subsystem functions returned void.

Model reference step function void input and output
arguments

Since R2010a, when a reusable subsystem fed the outport, code generation
might create output arguments for model reference step functions.

In R2013b, code generation produces model reference step functions with void
input and void output when the model reference block:

• Is a single instance.

• Has exported globals on its input and output ports.

15

R2013b

Deployment

ARM Cortex-M optimized code with
STM32F4-Discovery board example

Build ARM® Cortex®-M optimized executables from Simulink models.
Automatically run executables on STMicroelectronics® STM32F4-Discovery
boards.

Note In addition to the basic math optimizations provided by Embedded
Coder Support Package for ARM Cortex-M Processors, you can obtain
advanced optimizations for ARM DSP filters using the DSP System Toolbox™
Support Package for ARM Cortex Processors. For more information, see the
DSP System Toolbox release notes for “R2013b”.

Support package for ARM Cortex processors
Use the Embedded Coder Support Package for ARM Cortex-M Processors to:

• Build and run CMSIS-optimized executables on ARM Cortex-M QEMU
emulator.

• Use the capabilities and features described in “Supported Features for
ARM Cortex-M Processors”

To download and install this feature, perform the steps described in “Install
Support for ARM Cortex-M Processors”.

For more information, see the “Support Package for ARM Cortex-M
Processors” topic.

Support package for STMicroelectronics STM32F4-Discovery
Board
Use the Embedded Coder Support Package for STMicroelectronics STM32F4
Discovery™ Board to automatically build (makefile-based), download, and run
an executable on Discovery board processors.

16

Wind River® VxWorks® 6.9 support

Use blocks from the Embedded Coder Support Package for STMicroelectronics
STM32F4 Discovery Board block library:

• ADC — Convert analog signal to digital signal.

• GPIO Read — Configure input pin to read pin status.

• GPIO Write — Configure output pin to output pin status.

This support package automatically installs the following third-party
software:

• STM32F4DISCOVERY peripheral firmware examples
http://www.st.com/internet/evalboard/product/252419.jsp

• OpenOCD http://www.freddiechopin.pl/en/download/category/4-openocd

• GNU Tools for ARM Embedded Processors
https://launchpad.net/gcc-arm-embedded

• QEMU http://lassauge.free.fr/qemu/

• CMSIS
http://www.arm.com/products/processors/cortex-m/cortex-microcontroller-software-inter

To download and install this support package, perform the steps described in
“Install Support for STMicroelectronics STM32F4 Discovery Board”.

For more information, see the “Support Package for STMicroelectronics
STM32F4 Discovery Board” topic.

Wind River VxWorks 6.9 support
Compatibility Considerations: Yes

You can automatically generate code from Simulink models and execute it on
VxWorks® 6.9 RTOS.

To use this feature, install the corresponding support package:

1 In a MATLAB Command Window, enter supportPackageInstaller.

17

R2013b

2 Use Support Package Installer to install the Embedded Coder Support
Package for Wind River® VxWorks RTOS.

This feature includes the Embedded Coder Support Package for Wind River
VxWorks RTOS block library, which contains the following blocks:

• UDP Send and UDP Receive — Enable UDP communication with
networked devices using an Ethernet port.

• VxWorks Task — Spawn task function as a separate VxWorks thread.

For more information , see the “Support Package for Wind River VxWorks
RTOS” topic.

Compatibility Considerations
Previous versions of Embedded Coder software had built-in support for the
VxWorks 6.7 and 6.8. The current version of Embedded Coder does not have
built-in support for VxWorks 6.7 and 6.8. To get support for VxWorks 6.7,
6.8, and 6.9, install the Embedded Coder Support Package for Wind River
VxWorks RTOS.

Support package for Texas Instruments C2000
processors
Compatibility Considerations: Yes

You can automatically generate code from Simulink models and execute it on
Texas Instruments™ C2000™ processors.

To use this feature, install the corresponding support package:

1 In a MATLAB Command Window, enter supportPackageInstaller.

2 Use Support Package Installer to install Embedded Coder Support Package
for Texas Instruments C2000 Processors.

This feature includes the Embedded Coder Support Package for Texas
Instruments C2000 Processors block library, which contains:

• “C2802x (c2802xlib)” block library

18

Coder Target pane in Configuration Parameters dialog box

• “C2803x (c2803xlib)” block library

• “C2806x (c2806xlib)” block library

• “C280x (c280xlib)” block library

• “C281x (c281xlib)” block library

• “C2834x (c2834xlib)” block library

• “C28x3x (c2833xlib)” block library

• “Memory Operations” block library

• “Optimization — C28x™ DMC (c28xdmclib)” block library

• “Optimization — C28x IQmath (tiiqmathlib)” block library

• “RTDX™ Instrumentation (rtdxBlocks)” block library

• “Scheduling” block library

• “Target Communication” block library

For more information about this feature, see the “ Support Package for Texas
Instruments C2000 Processors ” topic.

Compatibility Considerations
Previous versions of Embedded Coder software had built-in support for C2000
processors. The current version of Embedded Coder does not have built-in
support for C2000 processors.

To get support for C2000 processors, install Embedded Coder Support Package
for Texas Instruments C2000 Processors, as described in the preceding section.

Coder Target pane in Configuration Parameters
dialog box

You can use the Coder Target pane to configure target hardware settings for
your model.

19

R2013b

This Coder Target pane has a the same name as the Code Generation > Coder
Target sub-pane that appears when the System target file parameter is
idelink_ert.tlc or idelink_grt.tlc.

Note For R2013b Prerelease, this Coder Target pane can only be used to
configure models for Texas Instruments C2000 processors. Before using
the Coder Target pane, install the support package for C2000 processors.
For more information, see “Support package for Texas Instruments C2000
processors” on page 18 and “Coder Target Pane: Texas Instruments C2000
Processors”.

To use the Coder Target pane:

20

ZedBoard™ hardware support

1 Open Configuration Parameter dialog box by entering Ctrl+E.

2 Select the Code Generation pane.

3 Set the System target file parameter to ert.tlc. Click Apply.

4 Set the Target hardware parameter to match your target hardware.

The Configuration Parameters dialog box displays the Coder Target pane
with parameters for the specified target hardware.

ZedBoard hardware support

You can automatically generate code from Simulink models and execute it on
ZedBoard™ hardware. Specifically, you can execute the code in the Linux®

environment on the ZedBoard’s ARM Cortex-A9 processor.

To use this feature, install the corresponding support package:

1 In a MATLAB Command Window, enter supportPackageInstaller.

2 Use Support Package Installer to install Embedded Coder Support Package
for Xilinx® Zynq®-7000 Platform.

This feature includes the Embedded Coder Support Package for Xilinx
Zynq-7000 Platform block library, which contains:

• UDP Send and UDP Receive — Enable UDP communication with
networked devices using an Ethernet port.

• Linux Task — Spawns task function as separate Linux thread.

For more information, see the “Support Package for Xilinx Zynq-7000
Platform” topic.

Note For more information about using HDL Coder™ software with the
FPGA on the Avnet® ZedBoard hardware, see “ IP core integration into Xilinx
EDK project for ZC702 and ZedBoard”

21

R2013b

Simplified multi-instance code interface and dynamic
memory allocation for ERT targets
Compatibility Considerations: Yes

Embedded Coder now provides a simplified multi-instance code interface,
with a dynamic memory allocation option, for ERT-based models. The new
capabilities support easier integration of multi-instance code into applications.
The new interface to generated model code features:

• Use of a single model entry-point function argument for instance data such
as signals, states, parameters, and optionally root-level input and output.

• Configurable argument list for model root-level input and output.

• Option to generate a function that dynamically allocates memory for model
instance data.

For more information, see model option Generate reusable code,
“Entry-Point Functions and Scheduling”, and “Generate Reentrant Code from
a Top-Level Model”.

For an example of an ERT-based model configured to generate reusable,
reentrant code, see the example model rtwdemo_reusable.

Compatibility Considerations

Beginning in R2013b, when you select Generate reusable code for an
ERT-based model, model data structures, such as Block I/O, DWork, and
Parameters, are packaged into the real-time model data structure. The
real-time model data structure is passed in a single argument to the model
entry-point functions model_initialize, model_step, and model_terminate.

In earlier releases, when you selected Generate reusable code for an
ERT-based model, model data structures were passed in separately as
arguments to model_step. The number of generated arguments varied,
depending on the data requirements of the model.

If you have code that calls reusable code generated from ERT-based models,
you should update the model entry-point function calls to use the new,
simplified interface.

22

Simplified multi-instance code interface and dynamic memory allocation for ERT targets

For example, consider model entry-point functions previously called as follows:

/* Step the model */
rtwdemo_reusable_step(&rtP, &rtDWork, &rtU, &rtY);

/* Initialize model */
rtwdemo_reusable_initialize();

In R2013b or later, the corresponding calls might be as follows:

/* Step the model */
rtwdemo_reusable_step(rtM, &rtU, &rtY);

/* Initialize model */
rtwdemo_reusable_initialize(rtM, &rtU, &rtY);

Beginning in R2013b, after selecting Generate reusable code, you also can
select the model option Generate function to allocate model data, which
generates a function to dynamically allocate memory (using malloc) for model
data structures. If you do not select this option, the model instance data must
be allocated either statically or dynamically by the calling code. For this
case, an additional requirement beginning in R2013b is that pointers to the
individual data structures (Block IO, DWork, and Parameters) must be set
up in the top-level real-time model data structure.

23

R2013b

Performance

Reusable custom storage class to reduce root I/O
memory

In R2013b, if a pair of root-level model input and output signals uses the
same storage class specification, code generation can reuse the root I/O
signals in the generated code. The storage class specifications are the new
custom storage class Reusable(Custom) or a custom storage class created
from Reusable(Custom). Reusing code for root input and output signals
allows for further optimizations that reduce data copies, global variables,
and ROM/RAM size. For more information, see “Signal Reuse for Root-Level
Model Inputs and Outputs”.

Subsystem functions reused independently of output
connection

Previously, code generation used different criteria to determine when to reuse
code.

• Code generation used the connection status to help determine the number
of subsystem functions to generate.

• Code generation reused subsystem functions with varied connection status
only when the outputs were passed by structure reference.

Code generation can now reuse subsystem functions regardless of:

• The connection state of the outputs. You can specify multiple outputs as
unconnected or terminated across subsystems.

• Whether the reusable system outputs are passed as Structure reference
or Individual arguments.

24

Verification

Verification

SIL and PIL support fixed-point data types wider
than 32 bits

Use software-in-the loop (SIL) and processor-in-the-loop (PIL) simulations to
verify generated code that contains fixed-point data types wider than 32 bits.

A number of host and target platforms support 64-bit native data types. On
these platforms, implementing a fixed-point data type wider than 32 bits
as a single word is more efficient than the multiword fixed-point approach.
Previously, data types wider than 32 bits, including multiword fixed-point,
were supported internally within a SIL or PIL component. However, the data
types were not supported in the communication between the MATLAB and
Simulink host and the SIL or PIL component on the target. Now, the software
supports 33-bit to 64-bit single word, fixed-point data types in host-target
communication.

Data types that SIL and PIL support include the following:

• 64-bit long and long long

• 64-bit execution profiling timer data type — Previously, the target returned
only the 32 least significant bits to the MATLAB host, with the possibility
of timer wrapping.

• int64 and uint64— Used in MATLAB Coder SIL execution.

The following constraints apply:

• For 64-bit data type support, the data type must be representable as long
or long long on the MATLAB host and the target. Otherwise, the software
uses the multiword fixed-point approach, which SIL and PIL do not support.

• 32-bit Windows® does not support 64-bit long or long long data types. In
this case, the software uses the multiword fixed-point approach which
SIL and PIL do not support.

• The software does not support the 40-bit long data type of the TI’s C6000™
target.

25

R2013b

Through the Configuration > Hardware Implementation pane, you
can enable support for the 64-bit long long data type. However, for
data types with widths between 33 and 40 bits (inclusive), the software
implements the data types using the 40-bit long data type which SIL and
PIL do not support.

SIL and PIL protected model support

Software-in-the-loop (SIL) or processor-in-the-loop (PIL) simulation modes
are now supported for protected models. You can run models that contain
protected models in SIL and PIL simulation modes if the protected models
support code generation. In previous releases, the only supported simulation
modes were Normal and Accelerator.

Code execution profiling improvements

Standalone code generation with function profiling
You can generate executable code (Ctrl+B) for your model even if function
profiling is enabled. The software produces the following warning message:

Warning: Code profiling instrumentation is not supported for standalone
builds (Ctrl+B). You can run the executable, but no profiling data will be
collected.

Previously, if function profiling was enabled for a SIL or PIL simulation,
building your model produced an error message. For example:

Code profiling instrumentation within the generated code is not supported
for top model standalone builds (Ctrl+B). You cannot build the top model
rtwdemo_sil_modelblock in standalone mode because rtwdemo_sil_modelblock
has code profiling instrumentation enabled. You must either simulate
rtwdemo_sil_modelblock in SIL or PIL mode or disable code profiling
instrumentation for rtwdemo_sil_modelblock. To disable code profiling
instrumentation, clear the check box Simulation > Configuration Parameters
> Code Generation > Verification > Measure function execution times.

For information about obtaining execution time profiles for generated code,
see “Code Execution Profiling”.

26

Code execution profiling improvements

Display of code section invocations
You can display code section invocations over the execution timeline.

For more information, see timeline.

SampleOffset and SamplePeriod removed
The coder.profile.ExecutionTimeSection SampleOffset and
SamplePeriod methods have been removed.

27

R2013b

Check bug reports for issues and fixes

Software is inherently complex and is not free of errors. The output of a code
generator might contain bugs, some of which are not detected by a compiler.
MathWorks reports critical known bugs brought to its attention on its Bug
Report system at www.mathworks.com/support/bugreports/. Use the Saved
Searches and Watched Bugs tool with the search phrase ‘‘Incorrect Code
Generation’’ to obtain a report of known bugs that produce code that might
compile and execute, but still produce wrong answers.

The bug reports are an integral part of the documentation for each release.
Examine periodically all bug reports for a release, as such reports may
identify inconsistencies between the actual behavior of a release you are using
and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and
validation strategy to identify potential bugs in your design, code, and tools.

Search R2013b Bug Reports
Known Bugs for Incorrect Code Generation:
www.mathworks.com/support/bugreports/?product=ALL&release=R2013b
&keyword=Incorrect+Code+Generation

All Known Bugs for This Product:
www.mathworks.com/support/bugreports/?release=R2013b&product=EC

28

http://www.mathworks.com/support/bugreports/
http://www.mathworks.com/support/bugreports/?product=ALL&release=R2013b&keyword=Incorrect+Code+Generation
http://www.mathworks.com/support/bugreports/?product=ALL&release=R2013b&keyword=Incorrect+Code+Generation
http://www.mathworks.com/support/bugreports/?release=R2013b&product=EC

R2013a

Version: 6.4

New Features: Yes

Bug Fixes: Yes

29

R2013a

Code Generation from MATLAB Code

Improved code replacement traceability for MATLAB
code generation

In the R2013a release, there is now improved code replacement traceability
for standalone code generated using MATLAB Coder. This capability is not
available for generated MEX functions. When you choose to include code
replacements in the code generation report:

• The code generation report includes a link to the Code Replacements
Report.

• Code replacement trace information is generated for viewing in the Trace
Information tab of the Code Replacement Viewer.

• The code replacement report lists replacement functions and their
associated MATLAB code.

You can use the code replacement report to:

• Determine which replacement functions were used in the generated code.

• Trace each replacement instance back to the MATLAB code that triggered
the replacement.

For more information, see Enable the Code Replacements Report and Viewing
Code Replacements in the Generated Code.

Static code metrics report for MATLAB Coder

When you generate standalone C code with MATLAB Coder, the HTML code
generation report now includes a static code metrics report. The static code
metrics report is not available for generated MEX functions.

The static code metrics include the:

• Number of source code files.

• Number of lines of code.

30

http://www.mathworks.com/help/releases/R2013a/ecoder/ug/enable-the-code-replacements-report.html
http://www.mathworks.com/help/releases/R2013a/ecoder/ug/viewing-code-replacements-in-the-generated-code.html
http://www.mathworks.com/help/releases/R2013a/ecoder/ug/viewing-code-replacements-in-the-generated-code.html

Static code metrics report for MATLAB® Coder™

• List of global variables.

• Functions in a call tree format.

• Estimated stack size required for a function.

You can use the information in the static code metrics report to:

• Find the number of files and lines of code in each file.

• Estimate the number of lines of code and stack usage per function.

• Compare how many files, functions, variables, and lines of code are
generated every time you change the MATLAB algorithm.

• Determine a target platform and allocation of RAM to the stack, based on
the size of global variables plus the estimated stack size.

• Determine possible performance slow points, such as the largest global
variables or the most costly call path in terms of stack usage.

• View the cyclomatic complexity of a function, which counts the number of
linearly independent paths through a function.

• View the function call tree.

• Determine the longest call path to estimate the worst-case execution timing.

• View how target functions, provided by the selected code replacement
library, are used in the generated code.

For more information, see Generate a Static Code Metrics Report for
MATLAB Code and Static Code Metrics.

31

http://www.mathworks.com/help/releases/R2013a/ecoder/ug/generate-a-static-code-metrics-report-for-matlab-code.html
http://www.mathworks.com/help/releases/R2013a/ecoder/ug/generate-a-static-code-metrics-report-for-matlab-code.html
http://www.mathworks.com/help/releases/R2013a/ecoder/ug/analyze-static-code-metrics-of-the-generated-code.html

R2013a

Model Architecture and Design

AUTOSAR user interface and round trip ARXML file
import and export improvements

Improved graphical user interfaces for AUTOSAR configuration
Embedded Coder software provides graphical user interfaces that allow you to
add AUTOSAR elements to a Simulink model and map model components and
interfaces to AUTOSAR components and interfaces. R2013a provides several
improvements to the graphical user interfaces for AUTOSAR configuration:

• The Configure AUTOSAR Interface dialog box now provides separate
Simulink-AUTOSAR Mapping and AUTOSAR Properties Explorers,
which clearly distinguish mapping and editing activities.

• In both the Mapping and Properties Explorers:

- Parameters that previously required text entry now offer selectable
values or attributes.

- Displays are more scalable (accommodating more elements) with fewer
refresh issues.

- Graphical layout reflects logical relationships between entities.

- Filtering enhances element selection and modification.

• The Properties Explorer provides intuitive double-click and add/remove
operations for configuring AUTOSAR ports, interfaces, data elements,
runnables, and events.

• New check and synchronization icons provide single-click access to
AUTOSAR configuration validation and Simulink model synchronization.

• A new AUTOSAR Component Builder dialog box allows you to interactively
create a customized AUTOSAR component.

To explore the Configure AUTOSAR Interface dialog box, open a model
that is already configured for AUTOSAR (such as the example model
rtwdemo_autosar_counter). Select Code > C/C++ Code > Configure
Model as AUTOSAR Component to open the dialog box. From there,

32

AUTOSAR user interface and round trip ARXML file import and export improvements

you can select either the Simulink-AUTOSAR Mapping Explorer or the
AUTOSAR Properties Explorer.

To explore the AUTOSAR Component Builder dialog box, open a model
that is not already configured for AUTOSAR (such as the example model
rtwdemo_counter). Select the AUTOSAR target (autosar.tlc) for the model,
and then select Code > C/C++ Code > Configure Model as AUTOSAR
Component. This action opens a dialog box that allows you to select
between creating a default AUTOSAR component or interactively creating
an AUTOSAR component. To open the AUTOSAR Component Builder dialog
box, click Create Component Interactively.

33

R2013a

Round-trip preservation of AUTOSAR elements and UUIDs
To help support the round trip of AUTOSAR elements between an AUTOSAR
authoring tool (AAT) and the Simulink model-based design environment,
Embedded Coder now preserves AUTOSAR elements and their UUIDs across
arxml import and export, as follows:

• When arxml files created by an AAT are imported into a Simulink model,
AUTOSAR element information is preserved, including UUIDs (for
Identifiables), properties, and reference packages.

• When arxml files are exported from a Simulink model, the elements
are generated back into arxml with their UUIDs and other information
preserved.

As a result, the arxml files exported from Simulink can more easily be merged
back into the AAT environment. Existing elements retain their UUIDs, while
new elements created in Simulink get new UUIDs.

34

Code generation for variable-size scalar signals

Code generation for variable-size scalar signals

Previously, a model that used a variable-size scalar signal (width equals
1) would cause an error during a model update. This limitation has been
removed and the model now simulates and generates code for a variable-size
scalar signal.

35

R2013a

Data, Function, and File Definition

Shortened system-generated identifier names

In R2013a, you have the option to shorten the system-generated identifier
names to allow more space for user names. This option also provides a
more predictable and consistent naming system that uses camel case, no
underscores or plurals, and consistent abbreviations for both a type and a
variable.

To use the new names, open the Configuration Parameters dialog box, and
on the Code Generation > Symbols pane, set the System-generated
identifiers parameter to Shortened. When you open a new model in R2013a,
the default setting for System-generated identifiers is set to Shortened.
When you open an existing model in R2013a, System-generated identifiers
is set as Classic. With this setting, the system-generated identifiers use
the names from previous releases.

For more information, see System-generated identifiers and Customize
Generated Identifier Naming Rules.

Improved data initialization with custom storage
classes

Previously, Embedded Coder generated initialization code for these two cases,
even though the DataInitialization parameter was set to None or Static.

1 Initial output of an Enabled Subsystem configured to reset when it is
enabled.

2 Fixed-point data with bias, which cannot have zero ground value

Now, Embedded Coder will not generate dynamic initialization code for data
that uses a custom storage class whose DataInitialization parameter is
set to None or Static.

36

http://www.mathworks.com/help/releases/R2013a/rtw/ref/code-generation-pane-symbols.html#btqlcrf-1
http://www.mathworks.com/help/releases/R2013a/ecoder/ug/configure-generated-identifiers-in-embedded-system-code.html
http://www.mathworks.com/help/releases/R2013a/ecoder/ug/configure-generated-identifiers-in-embedded-system-code.html

Default specification for global types

Default specification for global types

Previously, on the Configuration Parameters Symbol pane, the default for
Global types was NR$M. In R2013a, for new models, the default for Global
types is NR$M_T. For existing models opened in R2013a, Global types
does not change.

Subsystem block parameter Function packaging
option renamed

In the Subsystem block parameter dialog box, on the Code Generation
tab, the Function packaging option Function is renamed to Nonreusable
function.

37

http://www.mathworks.com/help/releases/R2013a/simulink/slref/codereusesubsystem.html#brp1xt9-91

R2013a

Code Generation

Model Advisor checks for code generation

The Model Advisor By Product folder contains the following checks to
replace Identify questionable blocks within the specified system:

• Check for blocks not supported by code generation

• Check for blocks not recommended for C/C++ production code deployment

To display the By Product folder, in the Model Advisor window select
Settings > Preferences. In the Model Advisor Preferences dialog box, select
Show By Product Folder.

38

http://www.mathworks.com/help/releases/R2013a/rtw/ref/embedded-codersimulink-coder-checks.html#btpdhno-1
http://www.mathworks.com/help/releases/R2013a/rtw/ref/embedded-codersimulink-coder-checks.html#btpdhq5-1

Deployment

Deployment

Concurrent execution API to target embedded
multicore platforms

Semaphore and mutex code replacement for multicore target
environments
Embedded Coder software now provides Simulink code replacement support
for the following semaphore and mutex operations.

Mutex Destroy
Mutex Init
Mutex Lock
Mutex Unlock
Semaphore Destroy
Semaphore Init
Semaphore Post
Semaphore Wait

Semaphore and mutex code replacement is supported for:

• Simulink code generation for data transfer between tasks

• Code generation targets

Semaphore and mutex code replacement is not supported for:

• Stateflow charts, MATLAB Function blocks, and MATLAB functions

• Simulation targets

For more information, see Map Semaphore or Mutex Operations to
Target-Specific Implementations.

Hardware timer function replacement
You can create a hardware-specific timer object for SIL and PIL simulations
with your hardware target. See Specification of hardware timer through the

39

http://www.mathworks.com/help/releases/R2013a/ecoder/ug/create-code-replacement-tables.html#bts61yy-1
http://www.mathworks.com/help/releases/R2013a/ecoder/ug/create-code-replacement-tables.html#bts61yy-1

R2013a

Code Replacement Tool in “Code execution profiling improvements” on page
50.

Hardware configuration relocation from Target
Preferences block to Configuration Parameters
dialog box

The contents of the Target Preferences block have been relocated to the
new Target Hardware Resources tab on the Coder Target pane in the
Configuration Parameters dialog box.

40

Hardware configuration relocation from Target Preferences block to Configuration Parameters dialog box

The Target Preferences block has been removed from the Embedded Targets
block library.

If you open a model that contains a Target Preferences block, a warning
instructs you that the block is optional and can be removed from your model.

Opening the Target Preferences block automatically displays the Target
Hardware Resources tab.

41

R2013a

For instructions on how to use Target Hardware Resources to build and
run a model on target hardware, see Model Setup.

For information about specific parameters and settings, see Code Generation:
Coder Target Pane.

Downloadable support and blocks for Analog
Devices DSPs
Compatibility Considerations: Yes

If you have an Embedded Coder license, you can install support for Analog
Devices™ VisualDSP++® IDE and DSPs as described in Install Support for
Analog Devices DSPs. Support for Analog Devices VisualDSP++ IDE and
DSPs includes the same capabilities that were previously available.

Use the “Embedded Coder Support Package for Analog Devices DSPs”
block library to manage peripherals, scheduling, and memory on Blackfin®,
SHARC®, and TigerSHARC® DSPs.

To get these capabilities, in a MATLAB Command Window, enter
supportPackageInstaller. Then, use Support Package Installer to install
the support package for Analog Devices DSPs. For more information, see the
Working with Analog Devices VisualDSP++ IDE topic.

After installing the support package, you can open the block library. In the
MATLAB Command Window, enter adivdsplib. The “Embedded Coder
Support Package for Analog Devices DSPs” block library is also available in
the Simulink Library Browser.

Compatibility Considerations

Previously, installing Embedded Coder software automatically installed
support and blocks for Analog Devices DSPs. Effective this release, you must
use Support Package Installer to install support before using Embedded
Coder with Analog Devices DSPs.

42

http://www.mathworks.com/help/releases/R2013a/ecoder/ug/model-setup.html
http://www.mathworks.com/help/releases/R2013a/ecoder/ref/code-generation-pane-ide-link.html
http://www.mathworks.com/help/releases/R2013a/ecoder/ref/code-generation-pane-ide-link.html
http://www.mathworks.com/help/releases/R2013a/ecoder/ug/install-support-for-analog-devices-dsps.html
http://www.mathworks.com/help/releases/R2013a/ecoder/ug/install-support-for-analog-devices-dsps.html
http://www.mathworks.com/help/releases/R2013a/ecoder/ref/supportpackageinstaller.html
http://www.mathworks.com/help/releases/R2013a/ecoder/working-with-analog-devices-visualdsp-ide.html

Texas Instruments™ C2000 Clocking Options

Texas Instruments C2000 Clocking Options

In the Configuration Parameters dialog box, on the Peripherals tab, the new
Clocking options help you to configure different timers that you use in the
processor peripherals.

• The high-speed and low-speed clock settings help you to configure the baud
rates for peripherals, such as SCI and SPI.

• You can specify the oscillator clock frequency used in the processor to set
the system clock out parameter for the device. Based on the system clock
out value, you can get feedback on the baud rate and the time settings.

• Automatic setting of the prescalers is done based on user-defined baud rate
for peripherals, such as SCI and SPI.

• Based on the settings that you make in the Clocking peripheral, you can
see the timing-related feedback for the peripherals, such as eCAN, I2C,
ADC, and Watchdog.

43

R2013a

• The parameter relationship is shown at the prompts in some of the
peripherals. For example, in eCAN, at the baud rate parameter, you can
see, CAN Module Clock/BRP/(TSEG1+TSEG2+1)) in bits/sec.

Support for Texas Instruments C2802x and Texas
Instruments C2803x variants

You can now run models on the following variants of TI C2802x and TI
C2803x processors:

• F28030

• F28031

• F28032

• F28033_cpu

• F28034

• F280200

• F28020

• F28021

• F28022

• F28026

You can use the following block libraries with these variants:

• C2802x (c2802xlib)

• C2803x (c2803xlib)

Downloadable support and blocks for Xilinx
Zynq-7000 platform

Use the Embedded Coder Support Package for Xilinx Zynq-7000 Platform
to automatically build (makefile-based), download, and run an executable
on the Xilinx Zynq-7000 SoC ZC702 Evaluation Kit. The executable runs
in the Linux environment on the ARM Cortex-A9 processor on the ZC702
Evaluation Kit.

44

http://www.mathworks.com/help/releases/R2013a/ecoder/c2802x-c2802xlib.html
http://www.mathworks.com/help/releases/R2013a/ecoder/c2803x-c2803xlib.html

Support ending for Eclipse™ IDE in a future release

Use blocks from the Embedded Coder Support Package for Xilinx Zynq-7000
Platform block library:

• The UDP Receive and UDP Send blocks enable communication with
networked devices using an Ethernet port.

• The Linux Task block spawns a task function as separate Linux thread.

To download and install this feature, click Add-Ons > Get Hardware
Support Packages on the MATLAB toolstrip. Then, use Support Package
Installer to install the Embedded Coder Support Package for Xilinx Zynq-7000
Platform. For more information, see the Working with the Xilinx Zynq-7000
Platform topic.

Support ending for Eclipse IDE in a future release

Support for the Eclipse™ IDE will end in a future release of the Embedded
Coder and Simulink Coder products.

Support ending for remoteBuild method in a future
release
Compatibility Considerations: Yes

Support for the remoteBuild method will end in a future release of the
Embedded Coder products.

Compatibility Considerations

Use Support Package Installer to install the support package for BeagleBoard
hardware, as described in Install Support for BeagleBoard Hardware. Then,
use the Simulink capability called “Run on Target Hardware” instead of
remoteBuild to build and run models on BeagleBoard hardware.

For more information about using Run on Target Hardware with BeagleBoard,
see the BeagleBoard topic.

45

http://www.mathworks.com/help/releases/R2013a/ecoder/ref/udpreceive.html
http://www.mathworks.com/help/releases/R2013a/ecoder/ref/udpsend.html
http://www.mathworks.com/help/releases/R2013a/ecoder/ref/linuxtask.html
http://www.mathworks.com/help/releases/R2013a/ecoder/working-with-xilinx-zynq-7000-platform.html
http://www.mathworks.com/help/releases/R2013a/ecoder/working-with-xilinx-zynq-7000-platform.html
http://www.mathworks.com/help/releases/R2013a/ecoder/ref/remotebuild.html
http://www.mathworks.com/help/releases/R2013a/simulink/ug/install-target-for-beagleboard-hardware.html
http://www.mathworks.com/help/releases/R2013a/simulink/beagleboard.html

R2013a

Performance

Optimized function arguments for nonreusable
subsystems

For nonreusable subsystems, you can specify the function interface in the
generated code to use arguments. This specification reduces global RAM.
It might reduce code size and improve execution speed, and allow the code
generator to apply additional optimizations.

To optimize the function interface for a subsystem, in the Subsystem Block
Parameter dialog box, on the Code Generation tab, set the Function
packaging parameter to Nonreusable function (previously, named
Function). The Function packaging parameter enables the Function
interface parameter. Set the Function interface parameter to Allow
arguments.

For more information, see Function interface and Reduce Global Variables in
Nonreusable Subsystem Functions.

Reduced data copies for tunable parameter
expressions

Previously, in the generated code, tunable parameter expressions were
copied to a temporary variable. In R2013a, the generated code removes this
temporary variable. The removal of this unnecessary data copy improves
execution speed, reduces code size and global RAM, and allows for additional
code optimizations.

For example, for a tunable parameter, b, used in a Constant block, the code
was:

/*Constant: '<Root>/Constant'*/
for (i=0; i<9; i++){

tunable_expr_copy_B.Constant[i] = Param.b[i];
}
/*End of Constant: '<Root>/Constant'*/

46

http://www.mathworks.com/help/releases/R2013a/simulink/slref/codereusesubsystem.html#btqa3p_-1
http://www.mathworks.com/help/releases/R2013a/ecoder/ug/specify-function-arguments-to-reduce-memory-usage.html
http://www.mathworks.com/help/releases/R2013a/ecoder/ug/specify-function-arguments-to-reduce-memory-usage.html

Removal of unused global variables

/*S-Function(MySFun2D): '<Root>/S-Function Builder'*/
MySFun2D_Outputs_wrapper(tunable_expr_copy_B.Constant);

Now, the generated code is:

/*S-Function(MySFun2D): '<Root>/S-Function Builder'*/
MySFun2D_Outputs_wrapper(Param.b);

Removal of unused global variables

In R2013a, unused global variables generated from a For Each subsystem and
bitfields are removed. This code generation enhancement reduces global RAM.

47

R2013a

Verification

Debugging during SIL simulations

If you notice differences between the results of a Normal mode simulation and
a SIL mode simulation, you can select the Configuration Parameters >
Verification > Enable source-level debugging for SIL check box and
rerun the SIL simulation. Then, from the Microsoft® Visual Studio® IDE,
you can insert break points in the generated source code and step through
the code during the SIL simulation. Observing code behavior in this way can
help you to understand the differences in results. For example, when you are
trying to integrate legacy code with generated code and the integration does
not run as expected.

For more information, see Debugging During SIL Simulations.

Simulation of multiple SIL Model blocks in a top
model

If you have a top model containing Model blocks, you can simulate the model
with multiple Model blocks in SIL mode. Previously, you could not simulate
the top model with more than one Model block in SIL mode. To verify the
different Model blocks, you had to run multiple simulations. Before each
simulation, you had to specify the SIL mode for one Model block. The removal
of this limitation reduces verification time.

If you specify code coverage or code execution profiling, the software does not
support this feature.

API for testing rtiostream communications

To run PIL or External mode simulations with custom hardware, you write
your own rtiostream implementations.

R2013a provides a test suite to debug and prove the behavior of custom
rtiostream interface implementations.

48

http://www.mathworks.com/help/releases/R2013a/ecoder/ug/debugging-during-sil-simulations.html

API for testing rtiostream communications

This new API has the following advantages:

• Reduces time for integrating custom hardware that does not have built-in
rtiostream support.

• Reduces time for testing custom rtiostream drivers.

• Helps analyze the performance of custom rtiostream drivers.

This test suite has two parts. One part of the test suite runs on the target.

To launch this part, compile and link the following files, which are in
matlabroot/toolbox/coder/rtiostream/src/rtiostreamtest.

• rtiostreamtest.c

• rtiostreamtest.h

• rtiostream.h

• rtiostream implementation under investigation (e.g.,
rtiostream_tcpip.c)

• main.c

To run the second part of the test suite, invoke rtiostreamtest. The syntax
is as follows:

function rtiostreamtest(connection,param1,param2)

• connection is a string indicating the communication method. It can have
values 'tcp' or 'serial'.

• param1 and param2 have different values depending on the value of
connection.

- If connection is 'tcp': param1,param2 are hostname and port,
respectively.

- If connection is 'serial': param1,param2 are COM port and baud
rate, respectively.

For example, you can run the second part of the test suite as follows:

function rtiostreamtest('tcp','localhost','2345')

49

R2013a

SIL and PIL support for targets with multicore
processors

R2013a allows you to run SIL and PIL simulations of models that are
configured for targets with multicore processors:

• You can run SIL and PIL simulations of single-rate component models
in a concurrent execution model hierarchy, without modifying models or
regenerating code.

• Previously, the configuration parameters, TargetOS and ConcurrentTasks,
had to be the same across a model hierarchy. This restriction has been
removed.

Additional code annotation for justifying Polyspace
checks

New Polyspace® code annotations have been added to justify occurrences of <<
and + inside fixed-point multiplication helper functions.

For more information, see Code Annotation for Justifying Polyspace Checks.

Code execution profiling improvements

Comprehensive measurement and reporting of function
execution times
R2013a provides comprehensive measurement and reporting of function
execution times:

• The software measures execution times for initialization, shared utility
and math library functions.

• The software inserts instrumentation probes around a function call site
so that the measured time includes the time taken to call the function.
Previously, the software inserted instrumentation probes inside the
function. As a result, the measured time represented the execution time
for only the function body.

50

http://www.mathworks.com/help/releases/R2013a/ecoder/ug/code-annotation-for-justifying-polyspace-checks-1.html

Code execution profiling improvements

• You can specify the time unit and numeric format for the time
measurements in the code execution profiling report. Previously, the
software reported execution times only in clock ticks. For information about
the new default specifications for time unit and numeric format, see report.

• The code execution profiling report contains hyperlinks to function call sites
in the SIL/PIL test harness. Previously, the report provided hyperlinks to
only source code files generated from the model.

For more information, see Code Execution Profiling.

Viewing and comparing execution time plots with the
Simulation Data Inspector
You can use the Simulation Data Inspector to view and compare
plots of function execution times. If you select All measurement
and analysis data from the Configuration Parameters > Code
Generation > Verification > Save options drop-down list, the software
automatically imports SIL simulation results into the Simulation Data
Inspector. This feature allows you to plot execution times and manage and
compare plots from various simulations.

For more information, see Configure Code Execution Profiling and View and
Compare Code Execution Times.

Specification of hardware timer through the Code Replacement
Tool
In SIL and PIL simulations, if your hardware target does not have built-in
timer support, you must create a timer object that provides details of the
hardware-specific timer and associated source files. In R2013a, you can
specify this hardware-specific timer using either the graphical user interface
of the Code Replacement Tool or the corresponding command line API. The
software stores the timer information as a Code Replacement Library (CRL)
table.

Previously, you could specify the timer using the MATLAB function
coder.profile.Timer. However, support for this function will cease in
a future release.

For more information, see Specify Hardware Timer.

51

http://www.mathworks.com/help/releases/R2013a/ecoder/ref/report.html
http://www.mathworks.com/help/releases/R2013a/ecoder/code-execution-profiling.html
http://www.mathworks.com/help/releases/R2013a/ecoder/ug/configuring-code-execution-profiling.html
http://www.mathworks.com/help/releases/R2013a/ecoder/ug/view-and-compare-code-execution-times.html
http://www.mathworks.com/help/releases/R2013a/ecoder/ug/view-and-compare-code-execution-times.html
http://www.mathworks.com/help/releases/R2013a/ecoder/ug/creating-a-connectivity-configuration-for-a-target.html#btsl_3g

R2013a

Code-to-model traceability links for reusable
subsystems in libraries

Code-to-model traceability links are now available in the generated code for a
reusable library subsystem. Code-to-model traceability links for a reusable
library subsystem appear in the comments of the generated code in the code
generation report. The traceability link is the name of the library.

To include traceability links in the generated code comments, see Traceability
in Code Generation Report.

52

http://www.mathworks.com/help/releases/R2013a/ecoder/ug/generate-an-html-code-generation-report.html
http://www.mathworks.com/help/releases/R2013a/ecoder/ug/generate-an-html-code-generation-report.html

Check bug reports for issues and fixes

Check bug reports for issues and fixes

Software is inherently complex and is not free of errors. The output of a code
generator might contain bugs, some of which are not detected by a compiler.
MathWorks reports critical known bugs brought to its attention on its Bug
Report system at www.mathworks.com/support/bugreports/. Use the Saved
Searches and Watched Bugs tool with the search phrase ‘‘Incorrect Code
Generation’’ to obtain a report of known bugs that produce code that might
compile and execute, but still produce wrong answers.

The bug reports are an integral part of the documentation for each release.
Examine periodically all bug reports for a release, as such reports may
identify inconsistencies between the actual behavior of a release you are using
and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and
validation strategy to identify potential bugs in your design, code, and tools.

Search R2013a Bug Reports
Known Bugs for Incorrect Code Generation:
www.mathworks.com/support/bugreports/?product=ALL&release=R2013a
&keyword=Incorrect+Code+Generation

All Known Bugs for This Product:
www.mathworks.com/support/bugreports/?release=R2013a&product=EC

53

http://www.mathworks.com/support/bugreports/
http://www.mathworks.com/support/bugreports/?product=ALL&release=R2013a&keyword=Incorrect+Code+Generation
http://www.mathworks.com/support/bugreports/?product=ALL&release=R2013a&keyword=Incorrect+Code+Generation
http://www.mathworks.com/support/bugreports/?release=R2013a&product=EC

R2012b

Version: 6.3

New Features: Yes

Bug Fixes: Yes

55

R2012b

Cyclomatic complexity measurement in static code
metrics report

In R2012b, the static code metrics report includes a cyclomatic complexity
measurement for each function. You can view the measurement in the
Complexity column of the Function Information table. For more information,
see Analyze Static Code Metrics.

Custom code substitution for MATLAB functions using
code replacement libraries

The coder.replace function provides the ability to replace a specified
MATLAB function with a code replacement library (CRL) function in the
generated code. You can use coder.replace both in MATLAB code from
which you want to generate C code using MATLAB Coder and in MATLAB
code in a MATLAB Function block. For more information, see coder.replace,
Replace MATLAB Function with Custom Code, and Replace MATLAB
Function Block Code with Custom Code.

In addition, you can use the code replacement tool to create and register code
replacement tables. These tables provide the basis for replacing default math
functions and operators in your generated code with target-specific code.
The ability to control function and operator replacements potentially allows
you to optimize target speed and memory and better integrate generated
code with external and legacy code.

Access the code replacement tool using one of these methods:

• At the MATLAB command line, enter:

crtool

• On the MATLAB Coder Project Settings dialog box Hardware tab, click
the Custom link.

For more information, see Create Code Replacement Table for a Sample
MATLAB Coder Project.

56

http://www.mathworks.com/help/releases/R2012b/ecoder/ug/analyze-static-code-metrics-of-the-generated-code.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/coder.replace.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ug/replace-matlab-function-with-custom-code.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ug/replace-matlab-function-block-code-with-custom-code.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ug/replace-matlab-function-block-code-with-custom-code.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ug/manage-crts-with-the-code-replacement-tool.html#btmad5b-1
http://www.mathworks.com/help/releases/R2012b/ecoder/ug/manage-crts-with-the-code-replacement-tool.html#btmad5b-1

SIL and PIL support for signal logging, encapsulated C++, and AUTOSAR calibration parameters

SIL and PIL support for signal logging, encapsulated
C++, and AUTOSAR calibration parameters

Beginning in R2012b, Embedded Coder software supports using Simulink
signal logging, encapsulated C++ code, and AUTOSAR calibration parameters
in SIL and PIL mode simulations.

Signal logging for SIL and PIL simulations
In R2012b, Simulink signal logging is extended to the SIL and PIL simulation
modes. This allows you to:

• Collect signal logging outputs (e.g., logsout) during SIL and PIL
simulations.

• Log the internal signals and the root-level outputs of a SIL or PIL
component.

• Manage the SIL and PIL signal logging settings using the Simulink Signal
Logging Selector.

• More easily compare logged signals between normal, SIL, and PIL
simulations, for example, using Simulation Data Inspector.

Signal logging is supported with the following forms of SIL and PIL
simulation:

• Top-model SIL or PIL

• Model block (referenced model) SIL or PIL

SIL or PIL signal logging requires the following model configuration settings:

• On the Data Import/Export pane of the Configuration Parameters dialog
box, set Signal logging format to Dataset.

• On the Code Generation > Interface pane of the Configuration
Parameters dialog box, set Interface to C API.

57

R2012b

Use SIL and PIL simulations to verify encapsulated C++ code
Previously, you could use SIL and PIL simulations to verify code generated
with the model configuration Language setting C or C++. Beginning with
R2012b, you can also use the Language setting C++ (Encapsulated).

Encapsulated C++ code is supported with the following forms of SIL and
PIL simulation:

• SIL or PIL block

• Top-model SIL or PIL

• Model block (referenced model) SIL or PIL

Improved SIL and PIL verification for AUTOSAR-compliant code
The following forms of SIL and PIL simulation support AUTOSAR calibration
parameters in generated code:

• SIL or PIL block

• Top-model SIL or PIL

You can use the calibration parameter custom storage classes CalPrm and
InternalCalPrm to reference data.

AUTOSAR 4.0 nonscalar data support

R2012b extends Embedded Coder support for using nonscalar data in models
from which AUTOSAR 4.0 compatible code is generated. Previously, you could
use nonscalar data associated with port elements, calibration parameters,
and per-instance memory. Beginning in R2012b, you also can use nonscalar
interrunnable variables (IRVs) in models configured for AUTOSAR.

For information about other AUTOSAR-related enhancements and changes,
see “AUTOSAR software component import and export enhancements” on
page 64.

58

Code annotation for justifying Polyspace checks

Code annotation for justifying Polyspace checks

You can apply Polyspace verification to generated code using the Polyspace
Model Link™ SL product. The software detects run-time errors in the
generated code. It also helps you to locate and fix model faults.

Because of the way Embedded Coder implements certain operations,
Polyspace might indicate potential overflows for operators or operations that
are actually legitimate.

Previously, you manually justified the associated orange checks in the
Polyspace verification environment.

Now, if you select the new check box, Configuration Parameters > Code
Generation > Comments > Auto generate comments > Operator
annotations, the Embedded Coder software annotates the generated code
with comments for Polyspace. When you run a Polyspace verification, the
Polyspace software uses the comments to justify overflows associated with
legitimate operations and assigns the Not a Defect classification to the
corresponding checks.

For more information, see Code Annotation for Justifying Polyspace Checks.

Texas Instruments Code Composer Studio IDE 5.1
support

This release adds support for version 5.1 of the Texas Instruments Code
Composer Studio™ IDE (CCS) to existing support for CCS versions 3.3 and
4.1.

Support for CCS version 5.1 includes the following capabilities:

• Automatic creation of makefile projects

• Support for DSP/BIOS™ version 5.41.xx

• Support for C6000™ Compiler version 7.3.x

For more information, see Working with Texas Instruments Code Composer
Studio IDE.

59

http://www.mathworks.com/help/releases/R2012b/ecoder/ug/code-annotation-for-justifying-polyspace-checks-1.html
http://www.mathworks.com/help/releases/R2012b/ecoder/working-with-texas-instruments-code-composer-studio-ide.html
http://www.mathworks.com/help/releases/R2012b/ecoder/working-with-texas-instruments-code-composer-studio-ide.html

R2012b

External mode support for ERT targets with static
main

Previously, Embedded Coder software supported External mode for ERT
targets only if the associated main program was automatically generated by
the model build process. Beginning in R2012b, the software also supports
External mode for ERT targets with a static main program. Specifically,
the static main file matlabroot/rtw/c/src/common/rt_main.c has been
enhanced to support External mode.

If you have authored a custom ERT-based target, you can support External
mode with your custom main program by updating your main program, using
the code in rt_main.c as an example.

Downloadable support for Green Hills MULTI
Compatibility Considerations: Yes

If you have an Embedded Coder license, you can install support for Green
Hills® MULTI® IDE (MULTI) as described in Install Support for Green Hills
MULTI IDE. Support for MULTI includes the same capabilities that were
previously available.

After installing support for MULTI, you can use the “Target for Use with
Green Hills MULTI IDE” block library, located in the Simulink Library
Browser. You can open this block library by entering idelinklib_ghsmulti
in the MATLAB Command Window.

The block library contains blocks for:

• Analog Devices Blackfin processors

- Memory Allocate

- Memory Copy

- Blackfin Hardware Interrupt

- Idle Task

• Freescale™ MPC55xx and MPC74xx processors

- Memory Allocate

60

http://www.mathworks.com/help/releases/R2012b/ecoder/ug/install-support-for-green-hills-multi-ide.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ug/install-support-for-green-hills-multi-ide.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/memoryallocate.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/memorycopy.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/blackfinhardwareinterrupt.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/idletask.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/memoryallocate.html

Support for Texas Instruments™ C2806x processors

- Memory Copy

- Idle Task

- MPC5500 Interrupt

- MPC7400 Hardware Interrupt

Compatibility Considerations

Previously, Embedded Coder software included support for MULTI. Now, use
Target Installer to install support before using Embedded Coder with MULTI.

Support for Texas Instruments C2806x processors

This release adds support for Texas Instruments C2806x processors to
Embedded Coder.

This support adds the C2806x (c2806xlib) block library to the Simulink
Library Browser. The C2806x block library includes the following blocks:

• C2802x/C2803x/C2806x ADC

• C2802x/C2803x/C2806x AnalogIO Input

• C2802x/C2803x/C2806x AnalogIO Output

• C28x CAN Calibration Protocol

• C2802x/C2803x/C2806x COMP

• C280x/C2802x/C2803x/C2806x/C28x3x/c2834x GPIO Digital Input

• C280x/C2802x/C2803x/C2806x/C28x3x/c2834x GPIO Digital Output

• C28x I2C Receive

• C28x I2C Transmit

• C28x SCI Receive

• C28x SCI Transmit

• C28x SPI Receive

• C28x SPI Transmit

61

http://www.mathworks.com/help/releases/R2012b/ecoder/ref/memorycopy.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/idletask.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/mpc5500interrupt.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/mpc7400hardwareinterrupt.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/c2802xc2803xc2806xadc.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/c2802xc2803xc2806xanalogioinput.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/c2802xc2803xc2806xanalogiooutput.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/c28xcancalibrationprotocol.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/c2802xc2803xc2806xcomp.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/c280xc2802xc2803xc2806xc28x3xc2834xgpiodigitalinput.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/c280xc2802xc2803xc2806xc28x3xc2834xgpiodigitaloutput.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/c28xi2creceive.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/c28xi2ctransmit.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/c28xscireceive.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/c28xscitransmit.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/c28xspireceive.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/c28xspitransmit.html

R2012b

• C28x Software Interrupt Trigger

• C28x Watchdog

• C28x eCAN Receive

• C28x eCAN Transmit

• C28x eCAP

• C280x/C2802x/C2803x/C2806x/C28x3x/c2834x ePWM

• C28x eQEP

For more information, see C2806x (c2806xlib).

Performance enhancement of Simulink data objects

In R2012b, Simulink can create and load subclasses of Simulink data
classes more efficiently. To take advantage of this enhancement, use the
setupCoderInfo method to configure the CoderInfo object of your class. The
setupCoderInfo method is called once during object construction.

Consider the example of the ECoderDemos.Parameter class. Previously, this
class was defined as follows. Notice how the CoderInfo object is configured in
the class constructor.

classdef Parameter < Simulink.Parameter

% ECoderDemos.Parameter Class definition.

methods

function h = Parameter(optionalValue)

% Use custom storage classes from this package

useLocalCustomStorageClasses(h, 'ECoderDemos');

% Set up object to use custom storage classes by default

h.CoderInfo.StorageClass = 'Custom';

% Initialize Value property

switch nargin

case 0,

% No action

62

http://www.mathworks.com/help/releases/R2012b/ecoder/ref/c28xsoftwareinterrupttrigger.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/c28xwatchdog.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/c28xecanreceive.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/c28xecantransmit.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/c28xecap.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/c280xc2802xc2803xc2806xc28x3xc2834xepwm.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/c28xeqep.html
http://www.mathworks.com/help/releases/R2012b/ecoder/c2806x-c2806xlib.html

Performance enhancement of Simulink® data objects

case 1,

h.Value = optionalValue;

end

end

end % methods

end % classdef

In this release, the ECoderDemos.Parameter class is defined as follows. Notice
the use of the setupCoderInfo method to configure the CoderInfo object.
The rest of the constructor method is unchanged.

Note You can access this class definition at
matlabroot/toolbox/rtw/targets/ecoder/ecoderdemos/dataclasses-
/+ECoderDemos/@Parameter/Parameter.m.

classdef Parameter < Simulink.Parameter

% ECoderDemos.Parameter Class definition

methods

function setupCoderInfo(h)

% Use custom storage classes from this package

useLocalCustomStorageClasses(h, 'ECoderDemos');

% Set up object to use custom storage classes by default

h.CoderInfo.StorageClass = 'Custom';

end

function h = Parameter(optionalValue)

% Initialize Value property

switch nargin

case 0,

% No action

case 1,

h.Value = optionalValue;

end

end

end % methods

end % classdef

63

R2012b

AUTOSAR software component import and export
enhancements

R2012b adds AUTOSAR workflow improvements, including import validation
and faster import and export of arxml files. See also “AUTOSAR 4.0 nonscalar
data support” on page 58.

Import validation
Beginning in R2012b, the AUTOSAR software component importer validates
the XML in the imported arxml files. If XML validation fails for a file, the
importer displays errors. For example:

Error

The IsService attribute is undefined for interface /mtest_pkg/mtest_if/In1

in file hArxmlFileErrorMissingIsService_SR_3p2.arxml:48.

Specify the IsService attribute to be either true or false

In this example message, the file name is a hyperlink, and you can click the
hyperlink to see the location of the error in the arxml file.

Faster import and export of arxml files
Beginning in R2012b, Embedded Coder software provides up to 20 times
faster import and export of AUTOSAR software component descriptions.

Explicit access mode for AUTOSAR Sender and Receiver ports
Previously, the AUTOSAR software component importer did not support
explicit data access modes for AUTOSAR component Sender and Receiver
ports. It issued a warning for an explicit data access mode and set the port
data access mode to implicit. Beginning in R2012b, the importer analyzes the
AUTOSAR software component to determine whether the data access mode
for a port is implicit or explicit. The importer honors an explicit access mode
setting. However, if conflicting data access modes are detected, the importer
issues a warning and sets the data access mode to implicit.

Import port-based calibration parameters
The AUTOSAR software component importer has been enhanced to import
any port-based calibration parameters referenced in the AUTOSAR software

64

Highlight virtual blocks in model Web view of code generation report

component. For each imported parameter, the importer creates a data object
in the MATLAB base workspace.

Highlight virtual blocks in model Web view of code
generation report

In the model Web view of the code generation report, when tracing between
the model and the code, if you click a virtual block and no code is highlighted
in the generated code pane, the virtual block is highlighted yellow.

Code Execution Profiling Improvements
Compatibility Considerations: Yes

Updated Code Execution Profiling API
The existing code execution profiling APIs, rtw.pil.ExecutionProfile
and rtw.pil.ExecutionProfileSection, have been replaced with
coder.profile.ExecutionTime and coder.profile.ExecutionTimeSection
respectively.

Compatibility Considerations

The old class names and methods forward to the corresponding new class
names and methods. A warning is not issued. The old method names are
hidden and no longer documented.

New Properties and Methods
The following new methods and properties have been added:

65

R2012b

Interface Method or Property

coder.profile.Timer coder.profile.Timer

display

Sections

TimerTicksPerSecond

coder.profile.ExecutionTime

report

coder.profile.ExecutionTimeSection ExecutionTimeInTicks

MaximumExecutionTimeCallNum

MaximumExecutionTimeInTicks

MaximumSelfTimeCallNum

MaximumSelfTimeInTicks

Name

Number

NumCalls

SampleOffset

SamplePeriod

SelfTimeInTicks

TotalExecutionTimeInTicks

TotalSelfTimeInTicks

Functionality Being Removed or Changed
The following functionality is being removed or changed:

66

http://www.mathworks.com/help/releases/R2012b/ecoder/ref/coder.profile.timer.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/display.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/sections.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/timertickspersecond.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/report.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/executiontimeinticks.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/maximumexecutiontimecallnum.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/maximumexecutiontimeinticks.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/maximumselftimecallnum.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/maximumselftimeinticks.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/name.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/number.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/numcalls.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/sampleoffset.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/sampleperiod.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/selftimeinticks.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/totalexecutiontimeinticks.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/totalselftimeinticks.html

Code Execution Profiling Improvements

Functionality What Happens
When You Use This
Functionality?

Use This Instead Compatibility
Considerations

rtw.connectivity.Timer Call is forwarded to
coder.profile.Timer
without warning
message.

coder.profile.Timer All methods are
the same as
rtw.connectivity.Timer.

rtw.pil.ExecutionProfile-
.display

Call is forwarded to
coder.profile.Execution-
Time.display without
warning message.

display None

rtw.pil.ExecutionProfile-
.report

Call is forwarded to
coder.profile.Execution-
Time.report without
warning message.

report None

rtw.pil.ExecutionProfile-
.getSectionProfile

rtw.pil.ExecutionProfile-
.getNumSectionProfiles

Call is forwarded to
coder.profile.Execution-
Time.Sections without
warning message.

Sections Uses property
syntax

rtw.pil.ExecutionProfile-
.getTimerTicksPerSecond

rtw.pil.ExecutionProfile-
.setTimerTicksPerSecond

Calls are forwarded
to property
coder.profile.Execution-
Time.TimerTicksPerSecond
without warning
message.

TimerTicksPerSecond Uses property
syntax

rtw.pil.ExecutionProfile-
Section.getMaxTicks

Call is forwarded to
coder.profile.Execution-
TimeSection.Maximum-
ExecutionTimeInTicks
without warning
message.

MaximumExecution-
TimeInTicks

Uses property
syntax

rtw.pil.ExecutionProfile-
Section.getName

Call is forwarded to
coder.profile.Execution-
TimeSection.Name
without warning
message.

Name Uses property
syntax

67

http://www.mathworks.com/help/releases/R2012b/ecoder/ref/coder.profile.timer.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/display.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/report.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/sections.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/timertickspersecond.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/maximumexecutiontimeinticks.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/maximumexecutiontimeinticks.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/name.html

R2012b

Functionality What Happens
When You Use This
Functionality?

Use This Instead Compatibility
Considerations

rtw.pil.ExecutionProfile-
Section.getNumCalls

Call is forwarded to
coder.profile.Execution-
TimeSection.NumCalls
without warning
message.

NumCalls Uses property
syntax

rtw.pil.ExecutionProfile-
.getSectionNumber

Call is forwarded to
coder.profile.Execution-
Time.Number without
warning message.

Number Uses property
syntax

rtw.pil.ExecutionProfile-
Section.getTicks

Call is forwarded to
coder.profile.Execution-
TimeSection.Execution-
TimeInTicks without
warning message.

ExecutionTimeInTicks Uses property
syntax

rtw.pil.ExecutionProfile-
.getTimes

Call is forwarded to
the legacy getTimes
function without
warning message.

Calculate execution
time in seconds
by the formula
ExecutionTimeInSecs
=
ExecutionTimeInTicks
/
TimerTicksPerSecond.

No equivalent to
getTimes in new
interface.

rtw.pil.ExecutionProfile-
Section.getTotalTicks

Call is forwarded to
coder.profile.Execution-
TimeSection.TotalExecution-
TimeInTicks without
warning message.

TotalExecution-
TimeInTicks

Uses property
syntax

rtw.pil.ExecutionProfile-
Section.getSampleOffset

Call is forwarded to
coder.profile.Execution-
TimeSection.SampleOffset
without warning
message.

SampleOffset Uses property
syntax

68

http://www.mathworks.com/help/releases/R2012b/ecoder/ref/numcalls.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/number.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/executiontimeinticks.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/totalexecutiontimeinticks.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/totalexecutiontimeinticks.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/sampleoffset.html

Incremental Compilation with Changes in Code Coverage Settings

Functionality What Happens
When You Use This
Functionality?

Use This Instead Compatibility
Considerations

rtw.pil.ExecutionProfile-
Section.getSamplePeriod

Call is forwarded to
coder.profile.Execution-
TimeSection.SamplePeriod
without warning
message.

SamplePeriod Uses property
syntax

rtw.pil.ExecutionProfile-
Section.getTotalSelfTicks

Call is forwarded to
coder.profile.Execution-
TimeSection.TotalSelf-
TimeInTicks without
warning message.

TotalSelfTimeInTicks Uses property
syntax

Code Execution Profiling Supports Single Object Output
Code execution profiling during a SIL or PIL simulation honors the Save
simulation output as a single object setting.

If the Measure task execution time check box is selected in the
Verification pane and the Save simulation output as a single object
check box is selected in the Data Import/Export pane, then theWorkspace
variable defined in the Verification pane is saved in the single output
object instead of in the base workspace.

Incremental Compilation with Changes in Code
Coverage Settings

If only code coverage settings have changed and the generated code is
otherwise up to date, code is not regenerated. Instead, the existing up-to-date
code is recompiled using the new code coverage settings.

69

http://www.mathworks.com/help/releases/R2012b/ecoder/ref/sampleperiod.html
http://www.mathworks.com/help/releases/R2012b/ecoder/ref/totalselftimeinticks.html

R2012b

Check bug reports for issues and fixes

Software is inherently complex and is not free of errors. The output of a code
generator might contain bugs, some of which are not detected by a compiler.
MathWorks reports critical known bugs brought to its attention on its Bug
Report system at www.mathworks.com/support/bugreports/. Use the Saved
Searches and Watched Bugs tool with the search phrase ‘‘Incorrect Code
Generation’’ to obtain a report of known bugs that produce code that might
compile and execute, but still produce wrong answers.

The bug reports are an integral part of the documentation for each release.
Examine periodically all bug reports for a release, as such reports may
identify inconsistencies between the actual behavior of a release you are using
and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and
validation strategy to identify potential bugs in your design, code, and tools.

Search R2012b Bug Reports
Known Bugs for Incorrect Code Generation:
www.mathworks.com/support/bugreports/?product=ALL&release=R2012b
&keyword=Incorrect+Code+Generation

All Known Bugs for This Product:
www.mathworks.com/support/bugreports/?release=R2012b&product=EC

70

http://www.mathworks.com/support/bugreports/
http://www.mathworks.com/support/bugreports/?product=ALL&release=R2012b&keyword=Incorrect+Code+Generation
http://www.mathworks.com/support/bugreports/?product=ALL&release=R2012b&keyword=Incorrect+Code+Generation
http://www.mathworks.com/support/bugreports/?release=R2012b&product=EC

R2012a

Version: 6.2

New Features: Yes

Bug Fixes: Yes

71

R2012a

AUTOSAR Enhancements

AUTOSAR Release 4.0
R2012a supports AUTOSAR Release 4.0 (version 4.0.2), which includes:

• Import and export of AUTOSAR R4.0 XML files

• Generation of AUTOSAR R4.0 code

• Support for application and implementation data types and base types. For
more information, see Data Type Support for Release 4.0.

• Code replacement library (CRL) support for over 300 routines from
the following AUTOSAR libraries:

- Floating-Point Math (AUTOSAR_SWS_MFLLibrary)

- Fixed-Point Math (AUTOSAR_SWS_MFXLibrary)

Support for Schema 2.0 Removed
Support for AUTOSAR schema version 2.0 has been removed from R2012a.
The software now supports the following schema versions:

• 4.0 (4.0.2)

• 3.2 (3.2.1)

• 3.1 (3.1.4) — Default

• 3.0 (3.0.2)

• 2.1 (XSD rev 0017)

Code Efficiency Enhancements

For Each Subsystem Loop Bound Passed by Value
The generated code of the For Each subsystem includes a loop bound that was
previously passed by a pointer. In R2012a, the loop bound is passed by value
which improves memory usage and execution speed.

For example, if you have a For Each subsystem with a Function name,
myFcnVectorized, the generated code for the function prototype is:

72

http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bsa24_3-1.html#btc1dbl
http://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ref/bq259j_-1.html#bq26cja-1

Code Efficiency Enhancements

void myFcnVectorized(int32_T NumIters,) {
for (ForEach_itr = 0;

ForEach_itr < NumIters;
ForEach_itr++) { ...

The argument NumIters is passed by value, instead of by pointer. The
function is called as follows:

myFcnVectorized(3, ...

For more information, see For Each Subsystem in the Simulink
documentation.

Fully Inlined S-functions from Legacy Code Tool
The Legacy Code Tool now automatically generates fully inlined S-functions
for legacy code. Previously, the generated code included an unnecessary data
copy for the function-call input. In R2012a, these temporary variables are no
longer generated. This enhancement reduces memory usage and improves
execution speed, as well as enabling other optimizations and a consistent
coding style.

For example, temporary variables, tmp and tmp_0, were used for the generated
function-call input:

int32_T i;

real_T tmp[6];

real_T tmp_0[6];

for (i = 0; i < 6; i++) {

/* S-Function (rtwdemo_sfun_ndarray_add):'<S1>/rtwdemo_sfun_ndarray_add' */

array3d_add(rtb_Output1,tmp,tmp_0,1,2,3);

Now, the generated code is:

int32_T i;

/* S-Function (rtwdemo_sfun_ndarray_add):'<S1>/rtwdemo_sfun_ndarray_add' */

array3d_add(rtb_Output1, rtwdemo_lct_ndarray_ConstP.Constant_Value,

rtwdemo_lct_ndarray_ConstP.Constant1_Value, 1, 2, 3);

73

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/foreachsubsystem.html

R2012a

For more information, see Integrate External Code Using Legacy Code Tool.

Element-Wise Operations as Inputs to Intrinsic Functions
In previous releases, element-wise operations were performed in temporary
variables before being used as inputs in an intrinsic function call. In R2012a,
element-wise operations are performed within the intrinsic function call to
improve memory usage and execution speed.

For example, in previous releases when you generated code for the following
MATLAB code:

function y = matrixExpand(u1, u2)
eml.varsize('u1', [4, 8, 10]);
eml.varsize('u2', [4, 8, 10]);
y = isnan(u1 + u2);

element-wise operations were stored in a temporary variable, x_data, which
became the input to the generated intrinsic function, muDoubleScalarIsNan:

for (i = 0; i <= loop_ub; i++) {
x_data[i] = u1_data[i] + u2_data[i];

}
...
for (i = 0; i <= loop_ub; i++) {

y_data[i] = muDoubleScalarIsNaN(x_data[i]);
}

In R2012a, the temporary variable is eliminated in the generated code and
the element-wise operations occur in the function call input:

for (i = 0; i <= loop_ub; i++) {
y_data[i] = muDoubleScalarIsNaN(u1_data[i] + u2_data[i]);

}

74

http://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ug/bq4fyia.html

Enhancements to Custom Storage Classes in Simulink and mpt Packages

Enhancements to Custom Storage Classes in Simulink
and mpt Packages

In this release, enhancements have been made to the following custom storage
classes (CSCs) in the Simulink package.

• Owner property added to Const, Volatile, ConstVolatile, ExportToFile

• Definition file property added to Const, Volatile, ConstVolatile,
ExportToFile

• Header file property added to Const, Volatile, ConstVolatile, Define

The following enhancements have been made to CSCs in the mpt package

• Owner property has been added to ExportToFile

• Settings for the Owner and Definition file properties for Global, Custom,
Volatile, and ConstVolatile CSCs have been moved from the Other
Attributes tab to the General tab of the Custom Storage Class Designer.

Code Generation Report Includes Simulink Web View

R2012a supports integration of the Simulink Web view into the code
generation report. You can view the generated code and model in a single web
browser window without MATLAB and Simulink installed on your computer.

To generate a code generation report with the model Web view, on the Code
Generation > Report pane of the model configuration parameters, select:

• Create code generation report

• Generate model Web view

• Open report automatically (optional)

For navigation between the generated code and the model in the Web view,
select

• Code-to-model

• Model-to-code

75

R2012a

For more information, see Include Model Web View in HTML Code Generation
Report. The model Web view requires a Simulink Report Generator™ license.

LDRA Testbed Code Coverage Annotations in Code
Generation Report

If you specify the LDRA Testbed® code coverage tool for a SIL/PIL simulation,
the code generation report provides summary data and code annotations with
LDRA Testbed coverage information. Each code annotation is associated with
a code feature and indicates the nature of the feature coverage during code
execution. See Code Coverage Summary and Annotations in Code Generation
Report.

You should not use the code generation report alone to check that your
coverage goals have been achieved. You must refer to the LDRA Testbed
Report. See View Code Coverage Information at the End of SIL or PIL
Simulations.

Generated Identifiers Enhancements

Simplified Identifiers for Model Reference Code
Previously, model reference identifiers were generated with the mr_ prefix. In
R2012a, code generation no longer includes the mr_ prefix to identifiers. This
naming convention is now consistent with the code generation of subsystem
identifiers and other identifiers. For more information, see Configuring
Generated Identifiers.

Consistent Identifiers for Comparing Generated Code
To generate unique identifiers in the generated code, the code generation
process inserts a mangling string in an identifier name. Previously, the
mangling string was generated using the full block path name, which
included the model name. In R2012a, the mangling string uses the Simulink
Identifier (SID), which is unique within the model. This mangling string
allows for consistent identifiers for similar or derived models, because the SID
is persistent even if you change the name of the model. If you create another
model using Save As, the SID is preserved for each block. For blocks in a

76

http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/btcg4p4.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/btcg4p4.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bslvigk.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bslvigk.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bscjqhf.html#bta1320
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bscjqhf.html#bta1320
http://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ug/br5qpiq.html#f1147684
http://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ug/br5qpiq.html#f1147684
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/bso67hf.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/bso67hf.html

Code Replacement Enhancements

subsystem, the SID is preserved whether you build the subsystem or build
the model containing the subsystem.

For example, you might want to make a structural change to a model and
then see the impact of the change on the generated code. You can save your
model using Save As and make a change to the saved model. To see only the
change in the generated code due to the change in the model, you can compare
the generated code from the original and derived model. Before R2012a, the
identifiers from the derived model were different, because the mangling string
included the different model names. It was difficult to see only the difference
in the generated code from the change in the model. Now, when you compare
the generated code for the two models, the difference is just the code resulting
from the change in the derived model.

If you have an Embedded Coder license, see Configure Generated Identifiers
in Embedded System Code for more information on customizing generated
identifiers.

Code Replacement Enhancements
Compatibility Considerations: Yes

R2012a provides the following enhancements to code replacement library
support.

Target Function Libraries Renamed to Code Replacement
Libraries
In R2012a, target function libraries (TFLs) are renamed to code replacement
libraries (CRLs). The change is reflected in software, demos, and
documentation. The changes include the following:

• The model configuration parameter Target function library
(TargetFunctionLibrary) is renamed to Code replacement
library (CodeReplacementLibrary). The command line parameter
TargetFunctionLibrary is still supported, but when you save a model, the
library value is saved using the parameter CodeReplacementLibrary.

• The code replacement demo rtwdemo_tfl_script is renamed to
rtwdemo_crl_script, and the rtwdemo_tfl* models associated with

77

http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/br5qpiq.html#f1147684
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/br5qpiq.html#f1147684
http://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ref/bq259j_-1.html#bq26cja-1
http://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ref/bq259j_-1.html#bq26cja-1

R2012a

the demo are renamed to rtwdemo_crl*. For example, the model
rtwdemo_tfladdsub is renamed to rtwdemo_crladdsub.

• The code replacement demo coderdemo_tfl is renamed to coderdemo_crl.

• The Target Function Library (TFL) Viewer is renamed to Code Replacement
Viewer.

Code replacement related items that have not been renamed include code
replacement classes, functions, and commands. Examples include the
RTW.TflCOperationEntry class, the setTflCFunctionEntryParameters
function, and the RTW.viewTfl command.

Enhanced Code Replacement Traceability
R2012a provides enhanced code replacement traceability, using the model
option Summarize which blocks triggered code replacements, which
is located on the Code Generation > Report pane of the Configuration
Parameters dialog box. When you select Summarize which blocks
triggered code replacements:

• Code generation includes a code replacement report in the HTML code
generation report for your model.

• Code replacement trace information is generated for viewing in the Trace
Information tab of the Code Replacement Viewer.

The code replacement report lists replacement functions and their associated
blocks. You can use the report to:

• Determine which replacement functions were used in the generated code.

• Trace each replacement instance back to the Simulink block that triggered
the replacement.

For more information, see Analyze Code Replacements in the Generated Code

The Trace Information tab of the Code Replacement Viewer lists Hit
Source Locations andMiss Source Locations. The Viewer provides links
to each source location (the source block for which code replacement was
considered) and, for misses, lists aMiss Reason. For example, if a rounding
mode setting did not match between a CRL entry and a block, the Viewer

78

http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/settflcfunctionentryparameters.html
http://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ref/brh9ygl-1.html#btaoq9q-1
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/btd9an8-1.html

Code Replacement Enhancements

displays a reason similar to the following: “Mismatched rounding mode:
actual ’RTW_ROUND_SIMPLEST’, expected ’RTW_ROUND_CEILING’.”
After generating code for your model, you can open the Code Replacement
Viewer for viewing hits and misses using the following commands:

>> crl=get_param('model','TargetFcnLibHandle')

>> RTW.viewTfl(crl)

When debugging a CRL entry, you can use code replacement report
information together with hits and misses information in the Code
Replacement Viewer to determine why a replacement function was not used
in the generated code.

For more information, see Trace Code Replacements Generated Using Your
Code Replacement Library and Determine Why Code Replacement Functions
Were Not Used.

Code Replacement Support for Simulink Matrix Division and
Inversion Operators
Embedded Coder software now provides Simulink code replacement support
for the following nonscalar division and inversion operators:

Operator Key

Matrix right division (/) RTW_OP_RDIV

Matrix left division (\) RTW_OP_LDIV

Matrix inversion (inv) RTW_OP_INV

For more information, see Map Nonscalar Operators to Target-Specific
Implementations.

Code Replacement Support for MATLAB Coder fix, hypot,
round, and sign Functions
Embedded Coder software now provides MATLAB Coder code replacement
support for fix, hypot, round, and sign functions.

79

http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brc_o1j.html#bre1jn1-1
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brc_o1j.html#bre1jn1-1
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brc_o1j.html#bre1jow-1
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brc_o1j.html#bre1jow-1
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brc_o1j.html#br4x94h-1
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brc_o1j.html#br4x94h-1

R2012a

Integer Functions Now Return Real-World Values
The following functions now return real-world values instead of stored integer
values: int8, int16, int32, int64, uint8, uint16, uint32, and uint64.

Compatibility Considerations

In code generation with MATLAB Coder or Simulink Coder, if you used a
CRL to replace a cast in your replacement function, silent incorrect numerical
results may occur. The numerical results will not change if the input fi
object has binary-point scaling and zero fractional length. To optimize code
generation, these integer functions now use floor rounding, instead of nearest
rounding, when the input fraction length equals 0. You should reevaluate
your integer cast replacement functions and update their replacement tables.

SIL and PIL Enhancements

R2012a supports the following enhancements for software-in-the loop (SIL)
and processor-in-the-loop (PIL) simulations.

SIL and PIL Test Harness Files in Code Generation Report
For top-model and Model block SIL and PIL simulations, the software now
displays test harness files and the corresponding static code metrics in the
code generation report.

80

http://www.mathworks.com/help/releases/R2012a/toolbox/fixedpoint/ref/int8.html
http://www.mathworks.com/help/releases/R2012a/toolbox/fixedpoint/ref/int16.html
http://www.mathworks.com/help/releases/R2012a/toolbox/fixedpoint/ref/int32.html
http://www.mathworks.com/help/releases/R2012a/toolbox/fixedpoint/ref/int64.html
http://www.mathworks.com/help/releases/R2012a/toolbox/fixedpoint/ref/uint8.html
http://www.mathworks.com/help/releases/R2012a/toolbox/fixedpoint/ref/uint16.html
http://www.mathworks.com/help/releases/R2012a/toolbox/fixedpoint/ref/uint32.html
http://www.mathworks.com/help/releases/R2012a/toolbox/fixedpoint/ref/uint64.html

SIL and PIL Enhancements

This feature helps you to:

• Understand and review the SIL and PIL verification process.

• See how your registered custom target connectivity files fit into the target
application that runs during a SIL or PIL simulation.

This feature is not available for simulations that you run with the PIL block.
For more information, see View Test Harness Files in Code Generation Report.

81

http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/btc09hd.html

R2012a

PIL Support for Code Coverage with LDRA Testbed
The target connectivity API supports code coverage with LDRA Testbed for
the following types of PIL simulation:

• Top-Model PIL

• Model block PIL

Previously, support for code coverage during a PIL simulation was only
available in special cases, where your PIL application could write directly to
the host file system.

You can run PIL simulations on simulator or target hardware and collect code
coverage metrics to support high integrity workflows, for example, DO-178B
and ISO 26262. For more information, see Use a Code Coverage Tool in SIL
and PIL Simulations.

Seamless Switching Between SIL and PIL for Top-Model and
Model Block
If you select Configuration Parameters > SIL and PIL
Verification > Enable portable word sizes, you can switch between the
SIL and PIL simulation modes without:

• Changing configuration parameters of your model

• Regenerating code (if your model is up-to-date)

This feature:

• Applies only to top-model and Model block SIL/PIL

• Requires that the code can be compiled by both the host computer and the
target platform

If your target uses code that cannot be compiled on the host, then you see
compilation errors when you try to simulate the model in SIL mode. You
might be able to work around this problem by adding the source code files to
the SkipForSil group in the build information object RTW.BuildInfo. The
SIL build on the host platform does not compile source files present in the
SkipForSil group. See Code that the Host Cannot Compile.

82

http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bscjqhf.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bscjqhf.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/br86vhn.html#btaed67

SIL and PIL Enhancements

Enhanced Hardware Implementation Support

Host and Target Floating Point Data Type Sizes
The host and target floating point data type sizes must be the same.
Previously, a mismatch would produce undefined behaviour resulting in a
simulation failure. Now, the software generates an error with a clear message
when the host and target data types are not:

• 32 bits for single

• 64 bits for double

For more information, seeHardware Implementation Support.

Word-Addressable Targets
Previously, the target connectivity API did not support word-addressable
targets for PIL simulations or SIL simulations with PortableWordSizes
enabled. This limitation has been removed.

In addition, data type sizes that are smaller than the target word sizes are
now supported. See Hardware Implementation Support.

The software uses the MATLAB host byte order when sending words through
the rtIOStream API. For information about host byte ordering, see computer
in the MATLAB Reference documentation.

Top-Model Output Limitations Removed
Previously, in a top-model SIL/PIL simulation, not all signal and output
logging fields matched the fields produced by a Normal simulation. For
example:

• With signal logging, the software would add the suffix _wrapper to the
block path for signals in logsout.

• With output logging, if the save format was Structure or Structure with
time, the software would add the suffix _wrapper to the block name for
signals in yout.

83

http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brr9tb5-12.html#brut__l-1
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brr9tb5-12.html#brut__l-1
http://www.mathworks.com/help/releases/R2012a/techdoc/ref/computer.html

R2012a

These limitations are not present in R2012a, except if you do one of the
following:

• Specify the signal logging format to be ModelDataLogs. In this case, yout
will still contain references to the wrapper model. You should use the
Dataset signal logging format. See Simulink.SimulationData.Dataset
in the Simulink reference documentation.

• Run command line simulations using the sim command but without
specifying the single-output format. See Using the sim Command in the
Simulink documentation.

Model Block SIL/PIL Support for Absolute Time
Previously, you could not run a Model block in the SIL or PIL mode if the
Model block contained Simulink blocks that depended on absolute time. Now,
Model block SIL/PIL supports absolute time except for the following case: the
Model block contains Simulink blocks that require absolute time and the
Model block is conditionally executed. See Configuration Parameters Support.

Changes for ERT and ERT-Based Targets
Compatibility Considerations: Yes

In R2012a, the simplified model call interface used by ERT targets has been
further streamlined. (The simplified call interface also is now available to
GRT target users — see Simplified Call Interface for Generated Code in the
R2012a Simulink Coder Release Notes.) With the call interface enhancements
come some compatibility considerations for static ERT main program
(ert_main.c) files created before R2012a.

Compatibility Considerations

ERT Main Programs Now Include rtmodel.h Instead of autobuild.h

• In previous releases, GRT-based main programs such as grt_main.c and
grt_malloc_main.c included rtmodel.h (which includes model.h) to
access model-specific data structures and entry points. However, the static
ERT main program ert_main.c included a different file, autobuild.h.

84

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/simulink.simulationdata.dataset.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f11-61836.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brr9tb5-12.html#brut_93-1
http://www.mathworks.com/help/releases/R2012a/toolbox/rtw/rn/bs8t7oo-1.html#btbqw7s

Changes for ERT and ERT-Based Targets

• Beginning in R2012a, GRT and static ERT main programs include
rtmodel.h. If you have a static ERT main program created before R2012a
that you want to use with R2012a generated code, update the main
program to include rtmodel.h instead of autobuild.h.

tid Argument to Model Step or Model Output/Update Function
No Longer Generated As part of streamlining the model call interface,
code generation no longer generates the tid argument to model_step or
model_output/model_update functions in multirate, single-tasking models. If
you have a static ERT main program created before R2012a that you want
to use with R2012a generated code, update the main program to remove the
tid argument in model function calls.

firstTime Argument to Model Initialize Function No Longer
Generated As part of streamlining the model call interface, code generation
no longer generates the firstTime argument to the model_initialize
function. If you have a static ERT main program created before R2012a that
you want to use with R2012a generated code, update the main program to
remove the firstTime argument in model_initialize function calls.

Note The target configuration parameter ERTFirstTimeCompliant and the
model configuration parameter IncludeERTFirstTime will be removed from
the Embedded Coder software in a future release.

MAT-file Logging and External Mode Calls Moved from Model
Code to Main Program As part of streamlining the model call interface,
some MAT-file logging and External mode calls have been moved from the
generated model code in model.c or .cpp to the main program code in
ert_main.c. MAT-file logging and External mode calls are not heavily used
in production code environments. However, if you have a static ERT main
program created before R2012a that you want to use with R2012a generated
code, and if you do want to support MAT-file logging or External mode, update
the main program to add the MAT-file logging and External mode calls.

85

http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/_step.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/model_initialize.html

R2012a

Changes for Embedded IDEs and Embedded Targets

• “Support Added for GCC 4.4 on Host Computers Running Linux with
Eclipse IDE” on page 86

• “Support Added for Using Processor-in-the-Loop (PIL) with Serial
Communication Interface (SCI) for TI C2000 Processors” on page 86

• “Support Removed for Freescale MPC5xx” on page 86

• “Limitation: Parallel Builds Not Supported for Embedded Targets” on
page 87

Support Added for GCC 4.4 on Host Computers Running Linux
with Eclipse IDE
Embedded Coder software now supports version 4.4 of GCC on host computers
running Linux with Eclipse IDE. This support is on both 32-bit and 64-bit
host Linux platforms.

If you were using an earlier version of GCC on Linux with Eclipse, upgrade
to GCC 4.4.

Support Added for Using Processor-in-the-Loop (PIL) with
Serial Communication Interface (SCI) for TI C2000 Processors
You can now perform PIL simulation over a SCI interface with Texas
Instruments C280x, C2802x, C2803x, C28x3x, c2834x processors. Previously,
this capability was supported only for TI C28035 and C28335 processors.

Support Removed for Freescale MPC5xx
This release removes support for the Freescale MPC5xx processor family
from the Embedded Coder product.

Attempting to generate code from models that contain blocks for Freescale
MPC5xx hardware produces an error message.

86

New and Enhanced Demos

Limitation: Parallel Builds Not Supported for Embedded
Targets
The Simulink Coder product provides an API for MATLAB Distributed
Computing Server™ and Parallel Computing Toolbox™ products. The API
allows these products to perform parallel builds that reduce build time for
referenced models. However, the API does not support parallel builds for
models whose System target file parameter is set to idelink_ert.tlc or
idelink_grt.tlc. Thus, you cannot perform parallel builds for Embedded
Targets.

New and Enhanced Demos

The following demos have been added in R2012a:

Demo... Shows How You Can...

rtwdemo_roll_axis Generate code for a roll axis autopilot control
system. The rtwdemo_roll model represents a
basic roll axis autopilot with two operating modes:
roll attitude hold and heading hold. rtwdemo_roll
replaces rtwdemo_f14.

c28335_pmsmfoc_script Schedule a multi-rate controller for a permanent
magnet synchronous machine (PMSM) motor
control application that runs on a Texas
Instruments F28335 processor.

The following demos have been enhanced in R2012a:

Demo... Now...

coderdemo_crl Reflects the renaming of target function libraries
(TFLs) to code replacement libraries (CRLs).

rtwdemo_crl_script • Reflects the renaming of target function libraries
(TFLs) to code replacement libraries (CRLs).

• Illustrates code replacement for Simulink matrix
division and inversion operators.

87

http://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ug/bs61oev.html#br2mrkl-1
http://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ug/bs61oev.html#br2mrkl-1
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/bqnb76d-1.html#bssm_lo-1
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/bqnb76d-1.html#bssm_lo-1

R2012a

Demo... Now...

rtwdemo_pmsmfoc_script Added torque and position control modes to
controller, parameterized motor and sensor data,
and added support for specifying baud rate in
example PIL implementation.

rtwdemo_radar Shows how to simulate and generate code for the
model rtwdemo_eml_aero_radar, which contains
a MATLAB script.

rtwdemo_configuration_set Shows how to use the Code Generation Advisor and
to automate the process of configuring a model for
simulation and code generation.

88

Check bug reports for issues and fixes

Check bug reports for issues and fixes

Software is inherently complex and is not free of errors. The output of a code
generator might contain bugs, some of which are not detected by a compiler.
MathWorks reports critical known bugs brought to its attention on its Bug
Report system at www.mathworks.com/support/bugreports/. Use the Saved
Searches and Watched Bugs tool with the search phrase ‘‘Incorrect Code
Generation’’ to obtain a report of known bugs that produce code that might
compile and execute, but still produce wrong answers.

The bug reports are an integral part of the documentation for each release.
Examine periodically all bug reports for a release, as such reports may
identify inconsistencies between the actual behavior of a release you are using
and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and
validation strategy to identify potential bugs in your design, code, and tools.

Search R2012a Bug Reports
Known Bugs for Incorrect Code Generation:
www.mathworks.com/support/bugreports/?product=ALL&release=R2012a
&keyword=Incorrect+Code+Generation

All Known Bugs for This Product:
www.mathworks.com/support/bugreports/?release=R2012a&product=EC

89

http://www.mathworks.com/support/bugreports/
http://www.mathworks.com/support/bugreports/?product=ALL&release=R2012a&keyword=Incorrect+Code+Generation
http://www.mathworks.com/support/bugreports/?product=ALL&release=R2012a&keyword=Incorrect+Code+Generation
http://www.mathworks.com/support/bugreports/?release=R2012a&product=EC

R2011b

Version: 6.1

New Features: Yes

Bug Fixes: Yes

91

R2011b

Static Code Metrics in Code Generation Report

The HTML code generation report now includes a static code metrics report.
The static code metrics include: number of source code files, number of lines of
code, list of global variables, functions in a call tree format, and the estimated
stack size required for a function.

To generate the static code metrics report, on the Code Generation >
Report pane of the Configuration Parameters dialog box, select the Static
code metrics parameter and build your model. For more information, see
Analyze Static Code Metrics of the Generated Code.

AUTOSAR Enhancements

Import and Export of AUTOSAR Sensor/Actuator Components
Embedded Coder now supports Sensor/Actuator Software Components. The
key difference between a sensor/actuator component and an application
component is that a sensor/actuator component can access the I/O hardware
abstraction part within the ECU abstraction layer.

This support allows you to import sensor/actuator components, implement
and test designs within Simulink, and export sensor/actuator components.
For more information, see Use the Configure AUTOSAR Interface Dialog Box.

Improved Simulink Library Support for Multiple Runnables
Previously, Embedded Coder did not support the creation of multiple
runnables from subsystems with links to Simulink library blocks. For
example, you had to disable and break links to library blocks in order to
configure and validate the subsystems as AUTOSAR runnables.

Now, the software supports the creation of multiple runnables when:

• The wrapper subsystem (containing function-call subsystems) is a link
to a library block

• The function-call subsystems (within the wrapper subsystem) are links
to library blocks

92

http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bs43n80.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bsnl_r7.html#brh_0h_-3

SIL and PIL Enhancements

For more information, see Configure Multiple Runnables in the Embedded
Coder documentation.

AUTOSAR Schema Version 3.2
The software now supports AUTOSAR schema version 3.2 (3.2.1). See Select
an AUTOSAR Schema.

Export AUTOSAR XML as Single File
When you export an AUTOSAR Software Component, you can generate XML
as either a set of files (default) or a single file. The latter option is new. For
more information, see Use the Configure AUTOSAR Interface Dialog Box.

SIL and PIL Enhancements

R2011b supports the following enhancements for software-in-the loop (SIL)
and processor-in-the-loop (PIL) simulations.

Code Execution Profiling of Functions in Subsystems and
Model Blocks
Previously, you could generate a profile of code execution times only for tasks
within your generated code (for example, the step function for a sample rate).
Now, you can also produce a profile of code execution times for functions
generated from atomic subsystems and model reference hierarchies within the
top model. The software places instrumentation probes inside these functions
and calculates execution times during a SIL or PIL simulation. At the end of
the simulation, you can view an HTML report and analyze execution times
within the MATLAB environment:

• The HTML report provides a summary of maximum and average execution
times, which allows you to identify code that requires optimization

• The supplied APIs allow you to carry out further analysis of time
measurements.

For more information, see Code Execution Profiling in the Embedded Coder
documentation.

93

http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bsnl_r7.html#brrj__2-1
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bsnmasw.html#brsz5z2-1
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bsnmasw.html#brsz5z2-1
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bsnl_r7.html#brh_0h_-3
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bst4d2j.html

R2011b

Code Coverage with LDRA Testbed
You can measure code coverage using the LDRA Testbed from LDRA Software
Technology. For more information, see Code Coverage.

BitField and GetSet Custom Storage Classes
The software previously did not support the BitField and GetSet custom
storage classes. Now, the software supports these custom storage classes for
all types of SIL and PIL simulations, with one limitation. GetSet behavior
for the SIL block is different from top-model SIL/PIL, Model block SIL/PIL,
and PIL block:

• SIL block — The C definitions of the Get and Set functions that you provide
form part of the algorithm under test.

• Other types of SIL/PIL — The SIL/PIL test harness automatically provides
C definitions of the Get and Set functions that are used during SIL/PIL
simulations. In addition, the software supports only scalar signals,
parameters and global data stores.

For more information, see I/O Support and GetSet Custom Storage Class.

Model Blocks with Variable-Size Signals
You can run Model block SIL and PIL simulations where the Model block
contains variable-size signals. On the Simulation > Configuration
Parameters > Model Referencing pane, in the Propagate sizes of
variable-size signals field, you must specify During execution. See I/O
Support.

Verification of Generated C++ Code
Previously, support for C++ was restricted to simulations with the SIL block.
Now, you can verify generated C++ code using all types of SIL and PIL:

• Top-model

• Model block

• SIL or PIL block

94

http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bsvxesb.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brr9tb5-12.html#brut__a-1
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brr9tb5-12.html#bruv2ph-1
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brr9tb5-12.html#brut__a-1
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brr9tb5-12.html#brut__a-1

Generate Multitasking Code for Concurrent Execution on Multicore Processors

As before, only the SIL block supports C++ encapsulation. See Configuration
Parameters Support.

Generate Multitasking Code for Concurrent Execution
on Multicore Processors

The Embedded Coder product extends the concurrent execution modeling
capability of the Simulink product. With Embedded Coder, you can generate
multitasking code that uses POSIX threads (Pthreads) for concurrent
execution on multicore processors running Linux or VxWorks.

See Configuring Models for Targets with Multicore Processors.

Changes for Embedded IDEs and Embedded Targets

• “64-bit Version of Embedded Coder Supports Analog Devices™
VisualDSP++® and Texas Instruments™ Code Composer Studio™ 3.3 and
4.0” on page 96

• “Support Added for Wind River VxWorks 6.8” on page 96

• “Support Added for Serial Communications Interface with
Processor-in-the-loop (PIL) for Texas Instruments™ C28035 and C28335”
on page 96

• “New Target Function Library for Intel IPP/SSE (GNU)” on page 97

• “Support Added for Single Instruction Multiple Data (SIMD) with ARM
Cortex-A8, ARM Cortex-A9 , and Intel Processors” on page 97

• “Support Removed for Altium TASKING” on page 98

• “Support Removed for Infineon® C166®” on page 98

• “Support Ending for Green Hills® MULTI® in a Future Release” on page 98

• “Support Ending for Freescale MPC5xx in a Future Release” on page 98

95

http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brr9tb5-12.html#brut_93-1
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brr9tb5-12.html#brut_93-1
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bs13l5v.html

R2011b

64-bit Version of Embedded Coder Supports Analog Devices
VisualDSP++ and Texas Instruments Code Composer Studio
3.3 and 4.0
Installing MATLAB & Simulink on a 64-bit Windows computer automatically
installs the 64-bit versions of your MathWorks® products, including
Embedded Coder software. Now, you can use the 64-bit version of Embedded
Coder software with the following 32-bit IDEs/tool chains:

• Texas Instruments Code Composer Studio 3.3

• Texas Instruments Code Composer Studio 4.0

• Analog Devices VisualDSP++ 5.0 (update 8)

Previously, you had to install the 32-bit versions of your MathWorks products
to use Embedded Coder software with these IDEs.

For more information, see
http://www.mathworks.com/hardware-support/texas-instruments.html and
http://www.mathworks.com/hardware-support/analog-devices.html.

Also, check the Texas Instruments and Analog Devices Web sites for support
information about using their tools on 64-bit Windows platforms.

Support Added for Wind River VxWorks 6.8
You can automatically generate and integrate code with the Wind River
VxWorks 6.8 RTOS using makefiles via the XMakefiles feature. For more
information, see Choosing an XMakefile Configurationand Working with
Wind River VxWorks RTOS.

Support Added for Serial Communications Interface with
Processor-in-the-loop (PIL) for Texas Instruments™ C28035
and C28335
This release adds support for Serial Communication Interface (SCI)
communications during processor-in-the-loop (PIL) simulations with Texas
Instruments™ C28035 and C28335 microcontrollers. Using SCI for PIL
simulations is much faster than using an IDE debugger for PIL.

96

http://www.mathworks.com/hardware-support/texas-instruments.html
http://www.mathworks.com/hardware-support/analog-devices.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bswv17x.html#bsyqvt1-5
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bspewof.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bspewof.html

Changes for Embedded IDEs and Embedded Targets

For more information, see Serial Communication Interface (SCI) for Texas
Instruments C2000, Example — Performing a Model Block PIL Simulation
via SCI Using Makefiles, and the fuelsys_pil demo.

New Target Function Library for Intel IPP/SSE (GNU)
This release adds a new Target Function Library (TFL), Intel IPP/SSE
(GNU), for the GCC compiler. This library includes the Intel Performance
Primitives (IPP) and Streaming SIMD Extensions (SSE) code replacements.

For more information, see Code Replacement Library (CRL) and Embedded
TargetsDesktop Targets.

Support Added for Single Instruction Multiple Data (SIMD) with
ARM Cortex-A8, ARM Cortex-A9 , and Intel Processors
This release adds support for the Single Instruction Multiple Data (SIMD)
capabilities of the ARM Cortex-A8, ARM Cortex-A9 , and Intel® processors.
The use of SIMD instructions increases throughput compared to traditional
Single Instruction Single Data (SISD) processing.

The following TFLs (code replacement libraries) optimize generated code
for SIMD:

• GCC ARM Cortex-A8 — The GCC compiler and the ARM Cortex-A8
embedded processor

• GCC ARM Cortex-A9 — The GCC compiler and the ARM Cortex-A9
embedded processor

• Intel IPP/SSE (GNU) — The GCC compiler and the Intel Performance
Primitives (IPP) and Streaming SIMD Extensions (SSE)

The performance of the SIMD-enabled executable depends on several factors,
including:

• Processor architecture of the target

• Optimized library support for the target

• The type and number of TFL replacements in the generated algorithmic
code

97

http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bswv2u0.html#bs1ol7w-1
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bswv2u0.html#bs1ol7w-1
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bswv2u0.html#bs24ayf-1
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bswv2u0.html#bs24ayf-1
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bsyo0zz-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bsyo0zz-1.html

R2011b

Evaluate the performance of your application before and after using the TFL.

To use SIMD capabilities, enable the corresponding TFLs as described in
Code Replacement Library (CRL) and Embedded TargetsDesktop Targets.

Support Removed for Altium TASKING
Support for the Altium® TASKING IDE has been removed from the Embedded
Coder product.

Support Removed for Infineon C166
Support for the Infineon® C166® processor family has been removed from
the Embedded Coder product.

Support Ending for Green Hills MULTI in a Future Release
Support for the Green Hills MULTI IDE will end in a future release of the
Embedded Coder product.

Support Ending for Freescale MPC5xx in a Future Release
Support for the Freescale MPC5xx processor family will end in a future
release of the Embedded Coder product.

Saturation Control of Stateflow Data

A new property for Stateflow charts, Saturate on integer overflow, enables
you to control the behavior of data with signed integer types when overflow
occurs. This check box appears in the Chart properties dialog box.

98

http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bsyo0zz-1.html

Custom Storage Class Properties for Managing Data Ownership and Definition

Check Box When to Use This
Setting

Overflow Handling Example of a Result

Selected Overflow is possible for
data in your Stateflow
chart and you want
explicit saturation
protection in the
generated code.

Overflows saturate to
either the minimum or
maximum value that the
data type can represent.

An overflow associated
with a signed 8-bit
integer saturates to –128
or +127.

Cleared You want to optimize
efficiency of the generated
code.

The behavior depends on
the C compiler you use
for generating code.

The number 130 does
not fit in a signed 8-bit
integer and wraps to
–126.

Arithmetic operations in the chart for which you can enable saturation
protection are:

• Unary minus: –a

• Binary operations: a + b, a – b, a * b, a / b, a ^ b

• Assignment operations: a += b, a –= b, a *= b, a /= b

For new charts, this check box is selected by default. When you open charts
saved in previous releases, the check box is cleared to maintain backward
compatibility.

For more information, see Handling Integer Overflow for Chart Data in the
Stateflow User’s Guide.

Custom Storage Class Properties for Managing Data
Ownership and Definition
Compatibility Considerations: Yes

In R2011b, use the Owner and Definition File properties of custom
storage classes to manage the definition and ownership of mpt data objects in
generated code.

99

http://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bs1ecin.html
http://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bqb5oe5.html

R2011b

Previously, you could include the data definitions in generated code but could
not specify the model that defined the data. Now, Embedded Coder creates
the data definitions in the generated code according to the Owner property.

The Owner property of a custom storage class specifies the model that owns
and defines the data in the generated code. The Definition File property
specifies a name for the data definition file that Embedded Coder generates.

Compatibility Considerations

• If your legacy code exports data definitions to generated code and you now
specify the Owner property, your generated code might have duplicate
data definitions. This duplication causes a link error. In this case, remove
the data definitions from the legacy code.

• If your legacy code does not export data definitions to generated code and
you now specify the Owner property, your generated code might not
contain data definitions. This mismatch causes a link error. In this case,
add the missing data definitions to your legacy code.

Export Data Declarations to Shared Header File for
Code Generation with Model Reference

When generating code with model reference, you can export shared data
declarations to a specific header file in a shared directory.

Specify a data declaration header file in the following ways:

• For a data object: In the Code generation options section of the data
object dialog

• For a model: In the Code Generation > Code Placement section of the
Configuration Parameters dialog

Specify the option to use a Shared location in the field Shared code
placement in Code Generation > Interface section of the Configuration
Parameters dialog.

100

Target Function Library Code Replacement Enhancements

Target Function Library Code Replacement
Enhancements

R2011b provides the following enhancements to code replacement using
target function libraries (TFLs).

Code Replacement Tool for Creating and Managing TFL Tables
R2011b provides the Code Replacement Tool, which helps you create and
manage the code replacement tables that make up a TFL. You can:

• Create a new code replacement table or import existing tables.

• Add, modify, and delete table entries. Each table entry represents a
potential code replacement for a single function or operator. You can
manage multiple tables together and copy and paste entries between tables.

• Validate tables and table entries.

• Save code replacement tables as MATLAB files.

• Generate the customization file you use to register your code replacement
tables with code generation software.

Each code replacement table contains one or more table entries. Each table
entry represents a potential replacement, during code generation, of a single
function or operator by a custom implementation. For each table entry, you
provide:

• Mapping Information, which relates a conceptual view of the function or
operator (similar to the Simulink block view of the function or operator) to
a custom implementation of that function or operator.

• Build Information, which provides header, source, or link information
required for building the custom implementation.

You can open the Code Replacement Tool in the following ways:

• Go to the Interface pane of the Configuration Parameters dialog box
and click the Custom button, which is located to the right of the Target
function library parameter.

• Use the MATLAB command crtool.

101

R2011b

For more information about creating code replacement tables for TFLs, see
Create and Manage Code Replacement Tables Using the Code Replacement
Tool.

Ability to Align Data Objects to TFL-Specified Boundaries to
Boost Code Performance
R2011b provides the ability to align data objects passed into a TFL
replacement function to a specified boundary. This allows you to take
advantage of target-specific function implementations that require data to
be aligned in order to optimize application performance. To configure data
alignment for a function implementation:

1 Specify the data alignment requirements in a TFL table entry. Alignment
can be specified separately for each implementation function argument or
collectively for all function arguments.

2 Specify the data alignment capabilities and syntax for one or more
compilers, and include the alignment specifications in a TFL registry entry
in an sl_customization.m or rtwTargetInfo.m file.

For more information on specifying data alignment requirements and
compiler alignment attributes, see Configure Data Alignment for Function
Implementations.

For additional examples of configuring data alignment for function
implementations, see the demo rtwdemo_tfl_script.

Support for Replacing Element-wise Matrix Multiply
TFLs support several nonscalar operators for replacement with custom
library functions in generated model code. R2011b adds support for replacing
element-wise matrix multiplication operations (.* operator in element-wise
mode) with custom implementations. For more information, see Map
Nonscalar Operators to Target-Specific Implementations.

102

http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brc_o1j.html#bs6lva2-1
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brc_o1j.html#bs6lva2-1
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brc_o1j.html#bs6isrc-1
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brc_o1j.html#bs6isrc-1
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brc_o1j.html#br4x94h-1
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brc_o1j.html#br4x94h-1

Code Generation Enhancements

Code Generation Enhancements

Redundant Condition Checks
Multiple checks of the same condition are difficult to avoid in modeling. For
example, a common modeling pattern is Switch blocks sharing the same
condition check. Previously, the generated code for multiple Switch blocks
produced multiple if statements.

if (cond) {
true_statement1;

} else {
false_statement1; }

if (cond) {
true_statement2;

} else {
false_statement2;

}

In R2011b, the generated code combines these condition checks. For example,
the generated code for Switch blocks with a common condition combines these
multiple if statements.

if (cond) {
true_statement1;
true_statement2;

}
else {

false_statement1;
false_statement2;

}

This optimization reduces code size and execution time. As a result, other
optimizations for condition expressions or merged branches are enabled which
reduce data copies and RAM usage.

Loop Fusion
R2011b provides more precise data dependency analysis of the data and
signals of a nested Simulink bus. This enhancement enables more loop fusion

103

R2011b

in the generated code which reduces code execution time and ROM, and
improves code readability.

Invariant Condition Check Lifting
When a condition check is invariant to the enclosing loop and you specify
loops to be unrolled, the code generator lifts the check out of the loop. This
enhancement reduces ROM, enables additional optimizations, and improves
execution speed and code readability. For more information on loop unrolling,
see Configure Loop Unrolling Threshold.

Parameter Pooling for Stateflow and Interpreted MATLAB
Function Blocks
Parameter pooling now occurs for Simulink matrix constants used as
Stateflow graphical function arguments. This enhancement reduces RAM and
ROM, and improves thread safety.

Readability Improvement for Reusable Subsystem Input and
Output
The generated code for reusable subsystem input and output now eliminates
redundant operators and unnecessary parentheses. This enhancement
improves code readability.

Enhanced Code Generation Optimization Using
Minimum and Maximum Values

The Optimize using specified minimum and maximum values code
generation option now takes into account the minimum and maximum
values specified for Simulink.Parameter objects even if the object is part of
an expression. For example, consider a Gain block with a gain parameter
specified as an expression such as k1 + 5, where k1 is a Simulink.Parameter
object with k1.min = -10 and k1.max = 10. If minimum and maximum
values of the parameter specified in the parameter dialog box are 0 and 20,
the range calculated for this parameter expression is 0 to 15.

For more information, see Optimize Generated Code Using Specified
Minimum and Maximum Values.

104

http://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ug/f1144193.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bsnwrhl.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bsnwrhl.html

New Model Advisor Check for Code Efficiency of Logic Blocks

New Model Advisor Check for Code Efficiency of
Logic Blocks

The Simulink Model Advisor includes the following new check for code
efficiency of logic blocks: Check output types of logic blocks. The following
blocks in the Simulink Logic and Bit Operations library can use boolean or
another setting for the output data type:

• Compare To Constant

• Compare To Zero

• Detect Change

• Detect Decrease

• Detect Fall Negative

• Detect Fall Nonpositive

• Detect Increase

• Detect Rise Nonnegative

• Detect Rise Positive

• Interval Test

• Interval Test Dynamic

• Logical Operator

• Relational Operator

Running this Model Advisor check helps you identify logic blocks that do not
use boolean for the output data type.

For more information about the Model Advisor, see Consulting the Model
Advisor in the Simulink documentation.

Control of Default Case Generation for Switch
Statements in Generated Code for Stateflow Charts

You can specify whether or not to generate default cases for switch statements
in the generated code for Stateflow charts. This optimization works on a

105

http://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ref/braj1_6-1.html#bs1j4rp
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/comparetoconstant.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/comparetozero.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/detectchange.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/detectdecrease.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/detectfallnegative.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/detectfallnonpositive.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/detectincrease.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/detectrisenonnegative.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/detectrisepositive.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/intervaltest.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/intervaltestdynamic.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/logicaloperator.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/relationaloperator.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f4-141979.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f4-141979.html

R2011b

per-model basis and applies to the code generated for a state that has multiple
substates. Use the following check box on the Code Generation > Code
Style pane of the Configuration Parameters dialog box:

Check Box When to Use This
Setting

Format of Switch
Statements

Selected Provide better code
coverage by checking
that every branch in
the generated code is
falsifiable.

Exclude the default case
when it is unreachable.

Cleared Check for MISRA C®

compliance and provide
a fallback in case of
RAM corruption.

Include a default case.

For new models, this check box is cleared by default. When you open models
saved in previous releases, the check box is also cleared to maintain backward
compatibility.

For more information, see Code Generation Pane: Code Style in the Embedded
Coder Reference documentation.

106

http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/bq26g1r.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/bqnoks2-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/bqnoks2-1.html

Improvement to Build Process for Conflicting Identifiers

Improvement to Build Process for Conflicting
Identifiers

Previously, if your model contained two referenced models with the same
input (or output) port names, the model might not build because of potentially
conflicting identifiers. The failure to build happens when the generated
identifiers exceed the Maximum identifier length. In R2011b, the build
process is improved to handle more cases when two referenced models have
the same input (or output) port names. For more information, see Model
Referencing Considerations.

Update to Code Generation Verification Class
cgv.Config
Compatibility Considerations: Yes

Compatibility Considerations

The Connectivity cgv.Config parameter has the following updates:

• pil replaces the custom value. In R2011b, you can use custom without
producing a warning or error message.

• The tasking value is not available. Specifying tasking produces an error.

License Names Not Yet Updated for Coder Product
Restructuring

The Simulink Coder and Embedded Coder license name strings stored in
license.dat and returned by the license ('inuse') function have not yet
been updated for the R2011a coder product restructuring. Specifically, the
license ('inuse') function continues to return 'real-time_workshop'
for Simulink Coder and 'rtw_embedded_coder' for Embedded Coder, as
shown below:

>> license('inuse')
matlab
matlab_coder
real-time_workshop

107

http://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ref/bq259iv-1.html#bq26cbm-1
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/br5qpiq.html#f19476
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/br5qpiq.html#f19476
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/cgv.configclass.html

R2011b

rtw_embedded_coder
simulink
>>

The license name strings intentionally were not changed, in order to avoid
license management complications in situations where Release 2011a
or higher is used alongside a preR2011a release in a common operating
environment. MathWorks plans to address this issue in a future release.

For more information about using the function, see the license
documentation.

New and Enhanced Demos

The following demos have been enhanced in R2011b:

Demo... Now...

rtwdemo_pmsmfoc_script Shows how you can perform system-level
simulation and algorithmic code generation using
Field-Oriented Control for a Permanent Magnet
Synchronous Machine

rtwdemo_sil_pil_script Incorporates code execution profiling

rtwdemo_tfl_script Shows how you can align nonscalar data passed into
a target function library (TFL) code replacement
function

fuelsys_pil Incorporates using serial communication interface
to communicate during PIL simulation

108

http://www.mathworks.com/help/releases/R2012a/techdoc/ref/license.html

Check bug reports for issues and fixes

Check bug reports for issues and fixes

Software is inherently complex and is not free of errors. The output of a code
generator might contain bugs, some of which are not detected by a compiler.
MathWorks reports critical known bugs brought to its attention on its Bug
Report system at www.mathworks.com/support/bugreports/. Use the Saved
Searches and Watched Bugs tool with the search phrase ‘‘Incorrect Code
Generation’’ to obtain a report of known bugs that produce code that might
compile and execute, but still produce wrong answers.

The bug reports are an integral part of the documentation for each release.
Examine periodically all bug reports for a release, as such reports may
identify inconsistencies between the actual behavior of a release you are using
and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and
validation strategy to identify potential bugs in your design, code, and tools.

Search R2011b Bug Reports
Known Bugs for Incorrect Code Generation:
www.mathworks.com/support/bugreports/?product=ALL&release=R2011b
&keyword=Incorrect+Code+Generation

All Known Bugs for This Product:
www.mathworks.com/support/bugreports/?release=R2011b&product=EC

109

http://www.mathworks.com/support/bugreports/
http://www.mathworks.com/support/bugreports/?product=ALL&release=R2011b&keyword=Incorrect+Code+Generation
http://www.mathworks.com/support/bugreports/?product=ALL&release=R2011b&keyword=Incorrect+Code+Generation
http://www.mathworks.com/support/bugreports/?release=R2011b&product=EC

R2011a

Version: 6.0

New Features: Yes

Bug Fixes: Yes

111

R2011a

Coder Product Restructuring
Compatibility Considerations: Yes

• “Product Restructuring Overview” on page 112

• “Resources for Upgrading from Real-Time Workshop Embedded Coder”
on page 113

• “Migration of Embedded MATLAB Coder Features to MATLAB® Coder™”
on page 114

• “Migration of Embedded IDE Link and Target Support Package Features
to Simulink® Coder™ and Embedded Coder” on page 114

• “Interface Changes Related to Product Restructuring” on page 115

• “Simulink Graphical User Interface Changes” on page 116

Product Restructuring Overview
In R2011a, the Embedded Coder product replaces the Real-Time Workshop®

Embedded Coder product. Additionally,

• The Simulink Coder product combines and replaces the Real-Time
Workshop and Stateflow Coder products

• The Real-Time Workshop facility for converting MATLAB code to C/C++
code, formerly referred to as Embedded MATLAB® Coder, has migrated to
the new MATLAB Coder product.

• The previously existing Embedded IDE Link™ and Target Support
Package™ products have been integrated into the new Simulink Coder and
Embedded Coder products.

The following figure shows the R2011a transitions for C/C++ code generation
related products, from the R2010b products to the new MATLAB Coder,
Simulink Coder, and Embedded Coder products.

112

Coder Product Restructuring

Simulink
Coder

MATLAB Coder

Embedded
Coder

Embedded
IDE Link

Target
Support
Package Stateflow

Coder

Real-Time
Workshop
Embedded

Coder

Real-Time
Workshop

embedded

Resources for Upgrading from Real-Time Workshop Embedded
Coder
If you are upgrading to Embedded Coder from Real-Time Workshop
Embedded Coder, review information about compatibility and upgrade issues
at the following locations:

• Release Notes for Embedded Coder (latest release), “Compatibility
Summary” section

• On the MathWorks web site, in the Archived documentation, select R2010b,
and view the following tables, which are provided in the release notes
for Real-Time Workshop Embedded Coder: Compatibility Summary for
Real-Time Workshop Embedded Coder Software:

This table provides compatibility information for releases up through
R2010b.

• If you use the Embedded IDE Link or Target Support Package capabilities
that now are integrated into Simulink Coder and Embedded Coder, go
to the Archived documentation and view the corresponding tables for
Embedded IDE Link or Target Support Package:

113

http://www.mathworks.com/help/doc-archives.html
http://www.mathworks.com/help/doc-archives.html

R2011a

- Compatibility Summary for Embedded IDE Link (R2010b)

- Compatibility Summary for Target Support Package (R2010b)

You can also refer to the rest of the archived documentation, including release
notes, for the Real-Time Workshop, Stateflow Coder, Embedded IDE Link,
and Target Support Package products.

Migration of Embedded MATLAB Coder Features to MATLAB
Coder
In R2011a, the MATLAB Coder function codegen replaces the Real-Time
Workshop function emlc. The emlc function still works in R2011a but
generates a warning, and will be removed in a future release. For more
information, see Generating C/C++ Code from MATLAB Code in the MATLAB
Coder documentation.

Migration of Embedded IDE Link and Target Support Package
Features to Simulink Coder and Embedded Coder
In R2011a, the capabilities formerly provided by the Embedded IDE Link and
Target Support Package products have been integrated into Simulink Coder
and Embedded Coder. The following table summarizes the transition of the
Embedded IDE Link and Target Support Package supported hardware and
software into Coder products.

Former Product Supported
Hardware and
Software

Simulink
Coder

Embedded
Coder

Altium TASKING x

Analog Devices
VisualDSP++

x

Eclipse IDE x x

Green Hills MULTI x

Embedded IDE Link

Texas Instruments
Code Composer Studio

x

114

http://www.mathworks.com/help/doc-archives.html
http://www.mathworks.com/help/releases/R2012a/toolbox/coder/ref/codegen.html
http://www.mathworks.com/help/releases/R2012a/toolbox/coder/ug/bq8j0_1.html

Coder Product Restructuring

Former Product Supported
Hardware and
Software

Simulink
Coder

Embedded
Coder

Analog Devices
Blackfin

x

ARM x

Freescale MPC5xx x

Infineon C166 x

Texas Instruments
C2000

x

Texas Instruments
C5000™

x

Texas Instruments
C6000

x

Linux OS x x

Windows OS x

Target Support
Package

VxWorks RTOS x

Interface Changes Related to Product Restructuring
You will see interface changes as part of restructuring the Coder products.

• In the Simulink Configuration Parameters dialog box, changes to code
generation related elements

• In Simulink menus, changes to code generation related elements

• In Simulink blocks, including block parameters and dialog boxes, and block
libraries, changes to code generation related elements

• In error messages, tool tips, demos, and product documentation, references
to Real-Time Workshop Embedded Coder, Real-Time Workshop, and
Stateflow Coder and related terms are replaced with references to the
latest software

115

R2011a

Simulink Graphical User Interface Changes

Where... Previously... Now...

Configuration
Parameters dialog
box

Real-Time Workshop
pane

Code Generation
pane

Model diagram window Tools > Real-Time
Workshop

Tools > Code
Generation

Subsystem context
menu

Real-Time Workshop Code Generation

Subsystem Parameter
dialog box

Following parameters
on main pane:
• Real-Time
Workshop system
code

• Real-Time
Workshop
function name
options

• Real-Time
Workshop
function name

• Real-Time
Workshop file
name options

• Real-Time
Workshop
file name (no
extension)

On new Code
Generation pane
and renamed:

• Function
packaging

• Function name
options

• Function name

• File name options

• File name (no
extension)

Compatibility Considerations

In the Help browser Contents pane, Embedded Coder is now listed with the
products for MATLAB, because Embedded Coder now supports both MATLAB
Coder and Simulink Coder workflows.

116

Data Management Enhancements and Changes

Data Management Enhancements and Changes
Compatibility Considerations: Yes

• “Memory Section Enhancements” on page 117

• “No Longer Able to Set RTWInfo or CustomAttributes Property of Simulink
Data Objects” on page 117

• “Parts of Data Class Infrastructure Not Available” on page 118

• “No Longer Generating Pragma for Data Defined with Built-In Storage
Class ExportedGlobal, ImportedExtern, or ImportedExternPointer” on
page 119

• “Simulink.CustomParameter and Simulink.CustomSignal Data Classes To
Be Deprecated in a Future Release” on page 120

Memory Section Enhancements

• Pragmas are now added to data and function declarations (prior to R2011a
they were added to definitions only); at compile time, this makes the
compiler aware of memory locations for functions and data, potentially
optimizing generated code

• New function category is available for shared utilities on the Code
Generation > Memory Sections pane: Shared utility

• Referenced models can have a memory section that is different from that of
the top model for the InitTerm and Execute function categories

No Longer Able to Set RTWInfo or CustomAttributes Property
of Simulink Data Objects
You can not set the RTWInfo or CustomAttributes property of a Simulink
data object from the MATLAB Command Window or a MATLAB script.
Attempts to set these properties generate an error.

Although you cannot set RTWInfo or CustomAttributes, you can still set
subproperties of RTWInfo and CustomAttributes.

117

http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/bq26g3q-1.html#bss4awq-1

R2011a

Compatibility Considerations

Operations from the MATLAB Command Window or a MATLAB script, which
set the data object property RTWInfo or CustomAttributes, generate an error.

For example, a MATLAB script might set these properties by copying a data
object as shown below:

a = Simulink.Parameter;
b = Simulink.Parameter;
b.RTWInfo = a.RTWInfo;
b.RTWInfo.CustomAttributes = a.RTWInfo.CustomAttributes;
.
.
.

To copy a data object, use the object’s deepCopy method.

a = Simulink.Parameter;
b = a.deepCopy;
.
.
.

Parts of Data Class Infrastructure Not Available
Simulink has been generating warnings for usage of the following data class
infrastructure features for several releases. As of R2011a, the features are
not supported.

• Custom storage classes not captured in the custom storage class
registration file (csc_registration) – warning displayed since R14SP2

• Built-in custom data class attributes BitFieldName and
FileName+IncludeDelimiter – warning displayed since R2008b

Instead of... Use...

BitFieldName StructName

FileName+IncludeDelimiterHeaderFile

118

Data Management Enhancements and Changes

• Initial value of MPT data objects inside mpt.CustomRTWInfoSignal –
warning displayed since R2006a

Compatibility Considerations

• When you use a removed feature, Simulink now generates an error.

• When loading a MAT-file that uses an unsupported feature, the load
operation suppresses the generated error such that it is not visible. In
addition, MATLAB silently deletes data that had been associated with the
unsupported feature. To prevent loss of data when loading a MAT-file, load
and resave the file with R2010b or earlier.

No Longer Generating Pragma for Data Defined with
Built-In Storage Class ExportedGlobal, ImportedExtern, or
ImportedExternPointer
The code generator no longer generates a pragma around definitions or
declarations for data that has the following built-in storage classes:

• ExportedGlobal

• ImportedExtern

• ImportedExternPointer

Prior to R2011a, based on model configuration parameters for specifying
memory sections and the built-in storage class defined for data, the code
generator would do the following:

For Built-In Storage Class... Generate pragma Around...

ExportedGlobal Data definition and
declaration

ImportedExtern Data declaration

ImportedExternPointer Data declaration

The code generator now treats data with these built-in storage classes like
custom storage classes with no memory section specified.

119

R2011a

Compatibility Considerations

To work around this change, select a custom storage class that uses the
memory section of interest for the data.

Simulink.CustomParameter and Simulink.CustomSignal Data
Classes To Be Deprecated in a Future Release
In a future release, data classes Simulink.CustomParameter and
Simulink.CustomSignal will no longer be supported because they are
equivalent to Simulink.Parameter and Simulink.Signal.

Compatibility Considerations

If you use the data class Simulink.CustomParameter or
Simulink.CustomSignal, Simulink posts a warning that identifies
the class and describes one or more techniques for eliminating it. You can
ignore these warnings in R2011a, but consider making the described changes
now because the classes will be removed in a future release.

AUTOSAR Enhancements

The following enhancements are available in R2011a.

Calibration Parameters
Previously, the software supported only calibration parameters that were
defined by a calibration component. These parameters could be accessed by
all AUTOSAR Software Components. The AUTOSAR standard also specifies
an internal calibration parameter that is defined and accessed by only one
AUTOSAR Software Component. The software now supports:

• AUTOSAR internal calibration parameters, including the import and
export of initial values of these parameters.

• A bus object data type (AUTOSAR record type) to import and export both
kinds of calibration parameters.

120

AUTOSAR Enhancements

For more information, see Calibration Parameters and Configure Calibration
Parameters in the Embedded Coder documentation.

Multiple Runnables from Virtual Subsystems
Previously, if a wrapper subsystem had virtual subsystems containing
function-call subsystems, you could not export the function-call subsystems
as AUTOSAR runnables from the wrapper subsystem level. Now, within
a wrapper subsystem, you can group function-call subsystems into virtual
subsystems and generate runnables for these function-call subsystems. See
Configure Multiple Runnables and Export AUTOSAR Software Component in
the Embedded Coder documentation.

Support for Code Descriptor Elements
The AUTOSAR standard specifies that the XML description of an AUTOSAR
Software Component implementation must contain code descriptor elements
to describe generated source files and include header files. This feature allows
AUTOSAR authoring tools that import software components to automate
the building process for source code.

Previously, the software did not generate the software component
implementation file (modelname_implementation.arxml) with these code
descriptor elements. Now, when you build a Simulink model for an AUTOSAR
target, the software generates a CODE-DESCRIPTORS element within the
SWC_IMPLEMENTATION element. The CODE-DESCRIPTORS element contains
XFILE elements that provide descriptions of the generated code.

For example, if you build the model rtwdemo_autosar_counter, the generated
file rtwdemo_autosar_counter_implementation.arxml has the following
SWC_IMPLEMENTATION element:

....

<SWC-IMPLEMENTATION>

<SHORT-NAME>rtwdemo_autosar_counter</SHORT-NAME>

<CODE-DESCRIPTORS>

<CODE>

<SHORT-NAME>Code</SHORT-NAME>

<TYPE>SRC</TYPE>

<XFILES>

121

http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bsa24_3-1.html#bsa24_3-8
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bsnl_r7.html#brrkabz-1
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bsnl_r7.html#brrkabz-1
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bsnl_r7.html#brrj__2-1
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bsnmasw.html#brkgi52-1

R2011a

<XFILE>

<SHORT-NAME>rtwdemo_autosar_counter_c</SHORT-NAME>

<CATEGORY>GeneratedFile</CATEGORY>

<URL>rtwdemo_autosar_counter_autosar_rtw\rtwdemo_autosar_counter.c</URL>

<TOOL>Embedded Coder</TOOL>

<TOOL-VERSION>5.6</TOOL-VERSION>

</XFILE>

<XFILE>

<SHORT-NAME>rtwdemo_autosar_counter_h</SHORT-NAME>

<CATEGORY>GeneratedFile</CATEGORY>

<URL>rtwdemo_autosar_counter_autosar_rtw\rtwdemo_autosar_counter.h</URL>

<TOOL>Embedded Coder</TOOL>

<TOOL-VERSION>5.6</TOOL-VERSION>

</XFILE>

...

</XFILES>

</CODE>

</CODE-DESCRIPTORS>

<CODE-GENERATOR>Embedded Coder 5.6 (R2011a) 26-Aug-2010</CODE-GENERATOR>

<PROGRAMMING-LANGUAGE>C</PROGRAMMING-LANGUAGE>

</SWC-IMPLEMENTATION>

....

SIL and PIL Enhancements

Code Execution Profiling
You can collect execution time measurements in a specified base workspace
variable during a software-in-the-loop (SIL) or processor-in-the-loop (PIL)
simulation. At the end of the simulation, you can view or analyze the
measurements within the MATLAB environment. This feature allows you to
collect an execution time profile for each task within your generated code.

The software supports code execution profiling for all types of SIL or PIL
simulations except the SIL block.

For more information, see Code Execution Profiling in the Embedded Coder
documentation.

122

http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bst4d2j.html

Code Generation Enhancements

PIL Block Parameter Tuning
R2011a supports parameter tuning for the PIL block, which allows you to
change tunable workspace parameters between or during simulations without
regenerating code. This feature also includes support for tunable structure
parameters. For more information, see I/O Support and Tunable Parameters
and SIL/PIL.

Top-Model SIL/PIL and PIL Block Parameter Initialization
R2011a supports automatic definition and initialization of parameters
with imported storage classes. For more information, see I/O Support and
Imported Data Definitions.

Model Block Parameter Tuning and Model Initialization
Previously, the software did not support the following features for Model
block SIL/PIL:

• Simplified initialization mode

• Tunable structure parameters

R2011a now supports these features. For more information, see Configuration
Parameters Support, I/O Support, and Tunable Parameters and SIL/PIL.

Code Generation Enhancements

Improved Code for Data Store Memory In-place Assignment
Previously, the generated code for a Data Store Memory block used data
copies to perform data store assignments. The generated code now eliminates
the data copies and performs an in-place assignment. This improvement
generates less code, uses less memory, and provides faster execution.

Improvements to Target Function Library Replacements
Enhancements to Target Function Library Replacements (TFL) include:

123

http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brr9tb5-12.html#brut__a-1
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brr9tb5-12.html#brydbkh
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brr9tb5-12.html#brydbkh
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brr9tb5-12.html#brut__a-1
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brr9tb5-12.html#brut_0r-1
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brr9tb5-12.html#brut_93-1
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brr9tb5-12.html#brut_93-1
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brr9tb5-12.html#brut__a-1
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brr9tb5-12.html#brydbkh

R2011a

• If multiple TFL replacements occur within a function, temporary variables
are now reused instead of creating extra temporary variables. This
enhancement reduces the stack size during TFL replacement.

• During TFL replacement, if unnecessary temporary variables are
introduced when block output is not the returned value of the function but
one of the input arguments, code generation now removes the temporary
variable. This enhancement improves execution speed and requires less
memory.

For more information, see Introduction to Code Replacement Libraries.

Improved Loop Fusion
Code generation now includes the following:

• An improved loop fusion algorithm that reduces data copies. This
enhancement decreases stack size, ROM consumption, and code generation
time.

• Selectively fuses loops when the loop count is larger than the Loop
unrolling threshold. In these cases, loop unrolling allows the code generator
to perform more optimizations. In addition, the code generator groups
the statements together to assign values to the elements of a signal or
parameter array, which improves data access and code readability.

Improved Array Indexing
The generated code is optimized for more efficient array indexing. When a
complex instruction is used repeatedly in an array index, the instruction is
replaced with a temporary variable to perform the calculation more efficiently.
This enhancement improves execution speed and reduces code size.

Improvement on Matrix Parameter Pooling
For matrix parameters with the same flattened value, the generated code now
pools the matrix parameters even when they have different shapes. This
enhancement reduces ROM consumption.

124

http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brc_o1j.html#brc_o1j-1
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/gui/bstq6gp-1.html#bq9_kyz-1
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/gui/bstq6gp-1.html#bq9_kyz-1

Code Generation Verification (CGV) API Updates

Readability Improvements Involving Data References
For references to the root inport and outport, as well as DWork, unnecessary
parentheses are removed from the generated code. This enhancement
produces more readable code.

Code Generation Verification (CGV) API Updates
Compatibility Considerations: Yes

Support for Adding Multiple Callback Functions
In R2011a, the cgv.CGV class includes new methods to add callback functions.
These methods replace the cgv.CGV.addCallback method which added only a
pre-execution callback function. Now, the new methods allow CGV to invoke
callback functions at several stages of the cgv.CGV.run execution. The new
methods are:

• cgv.CGV.addHeaderReportFcn adds a callback function invoked before
executing input data in the cgv.CGV object.

• cgv.CGV.addPreExecReportFcn adds a callback function invoked before
executing each input data file in the cgv.CGV object.

• cgv.CGV.addPreExecFcn adds a callback function invoked before executing
each input data file in the cgv.CGV object.

• cgv.CGV.addPostExecReportFcn adds a callback function invoked after
executing each input data file in the cgv.CGV object.

• cgv.CGV.addPostExecFcn adds a callback function invoked after executing
each input data file in the cgv.CGV object.

• cgv.CGV.addTrailerReportFcn adds a callback function invoked after
executing input data in the cgv.CGV object.

New Functionality Added to the cgv.CGV Class
The cgv.CGV class now includes the following methods:

• cgv.CGV.activateConfigSet activates the configuration set of a model.

125

http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/cgv.cgvclass.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/cgv.cgv.run.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/cgv.cgv.addheaderreportfcn.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/cgv.cgv.addpreexecreportfcn.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/cgv.cgv.addpreexecfcn.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/cgv.cgv.addpostexecreportfcn.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/cgv.cgv.addpostexecfcn.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/cgv.cgv.addtrailerreportfcn.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/cgv.cgv.activateconfigset.html

R2011a

• cgv.CGV.addBaseline adds a file of baseline data for comparison.

• cgv.CGV.copySetup creates a copy of a cgv.CGV object.

• cgv.CGV.setMode specifies the mode of execution (sim, sil, or pil).

• cgv.CGV.copySetup returns the status of the execution of the cgv.CGV
object.

The cgv.CGV class now includes the following properties:

• Name

• Description

Compatibility Considerations

Previously, the cgv.CGV class included parameters that you set to perform
automatic configuration checks of your model. In R2011a, cgv.CGV class
does not performs automatic configuration checks. Instead, you can use the
cgv.Config class to perform a manual configuration check of your model.
Before calling cgv.CGV.run, perform a manual configuration check of your
model. Otherwise, an error might occur later in the process. For more
information, see Programmatic Code Generation Verification.

Changes to the cgv.CGV class parameters are listed in the following table.

Parameter What Happens
When You Use
Parameter?

Use This Parameter
Instead

Compatibility
Considerations

LogMode removed from
cgv.CGV

Errors LogMode parameter in
cgv.Config

To check your model
before running
CGV, pass the
LogMode parameter
to the constructor
for cgv.Config.
Then call the
cgv.Config.configModel

126

http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/cgv.cgv.addbaseline.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/cgv.cgv.copysetup.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/cgv.cgv.setmode.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/cgv.cgv.copysetup.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/cgv.configclass.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/br9mwb6-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/cgv.config.configmodel.html

Code Generation Verification (CGV) API Updates

Parameter What Happens
When You Use
Parameter?

Use This Parameter
Instead

Compatibility
Considerations

method to adjust the
model configuration.

Processor removed
from cgv.CGV

Errors Processor parameter
in cgv.Config

To check your model
before running
CGV, pass the
Processor parameter
to the constructor
for cgv.Config.
Then call the
cgv.Config.configModel
method to adjust the
model configuration.

SaveModel removed
from cgv.CGV

Errors SaveModel parameter
in cgv.Config

To check your model
before running
CGV, pass the
SaveModel parameter
to the constructor
for cgv.Config.
Then call the
cgv.Config.configModel
method to adjust the
model configuration.

ConfigModel removed
from cgv.CGV

Warns if set to off

Errors if set to on

cgv.Config.configModel
method

To check your model
before running
CGV, replace the
cgv.CGVConfigModel
parameter with
a call to the
cgv.Config.configModel
method

127

http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/cgv.config.configmodel.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/cgv.config.configmodel.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/cgv.config.configmodel.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/cgv.config.configmodel.html

R2011a

Parameter What Happens
When You Use
Parameter?

Use This Parameter
Instead

Compatibility
Considerations

CheckInterface
parameter from
cgv.CGV

Warns if set to off

Errors if set to on

CheckOutports
parameter in
cgv.Config

To check your model
before running
CGV, pass the
CheckOutports
parameter to
the constructor
for cgv.Config.
Then call the
cgv.Config.configModel
method to adjust the
model configuration.

tasking and custom
values removed from
the Connectivity
parameter of cgv.CGV

Errors pil, a new value
for the cgv.CGV
Connectivity
parameter

Replace calls
to the cgv.CGV
constructor using
the parameter-value
arguments,
('Connectivity',
'tasking') or
('Connectivity',
'custom'), with
('Connectivity,
'pil').

Changes to the cgv.Config class parameters are listed in the following table:

128

http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/cgv.config.configmodel.html

MISRA-C Code Generation Objective

Parameter What Happens When You
Use Parameter?

Compatibility
Considerations

CheckOutports parameter
added to cgv.Config

Defaults to on. Compiles the
model. Then checks that the
model outport configuration is
compatible with the cgv.CGV
object.

If your script fixes errors
reported by cgv.Config, you
can set CheckOutports to off.

LogMode parameter from
cgv.Config

Change in behavior If you do not give a value for
LogMode, logging changes are
not made to the configuration
parameters.

MISRA-C Code Generation Objective

The Code Generation Advisor now includes a new objective for MISRA-C:2004
guidelines. To set the new objective, open the Configuration Parameters
dialog box and select the Code Generation pane. In the Code Generation
Advisor section, click the Set objectives button to open the Code Generation
Advisor dialog box. In the Available objectives list, select MISRA-C:2004
guidelines and click the select button (arrow pointing right) to move the
objective to the Selected objectives list. For more information on setting
objectives, see Application Objectives.

New Model Advisor Check for Code Efficiency of
Lookup Table Blocks

The Simulink Model Advisor includes the following new check for code
efficiency of lookup table blocks: Identify lookup table blocks that generate
expensive out-of-range checking code. By default, the following blocks
generate code that checks for out-of-range breakpoint inputs:

• 1-D Lookup Table

• 2-D Lookup Table

• n-D Lookup Table

• Prelookup

129

http://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ug/br1kmvm-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ref/braj1_6-1.html#bstpknv-1
http://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ref/braj1_6-1.html#bstpknv-1
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/1dlookuptable.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/2dlookuptable.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/ndlookuptable.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/prelookup.html

R2011a

Similarly, the Interpolation Using Prelookup block generates code that checks
for out-of-range index inputs. Running this Model Advisor check helps you
identify lookup table blocks that generate out-of-range checking code for
breakpoint or index inputs.

For more information about the Model Advisor, see Consulting the Model
Advisor in the Simulink documentation.

Enhanced Code Generation Optimization

The Optimize using specified minimum and maximum values code
generation option now takes into account the minimum and maximum values
specified for:

• A Simulink.Parameter object provided that it is used on its own. It does
not use these minimum and maximum values if the object is part of an
expression. For example, if a Gain block has a gain parameter specified
as K1, where K1 is defined as a Simulink.Parameter object in the base
workspace, the optimization takes the minimum and maximum values
of K1 into account. However, if the Gain block has a gain parameter of
K1+5 or K1+K2+K3, where K2 and K3 are also Simulink.Parameter objects,
the optimization does not use the minimum and maximum values of K1,
K2 or K3.

• Design ranges specified on block outputs in a conditionally-executed
subsystem, except for the block outputs that are directly connected to an
Outport block.

For more information, see Optimize Generated Code Using Specified
Minimum and Maximum Values.

Target Function Library Replacement Based on
Computation Method for Reciprocal Sqrt, Sine, and
Cosine

Target function libraries (TFLs) now support the ability to control replacement
of certain math functions using their computation method as a distinguishing
attribute. For example,

130

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/interpolationusingprelookup.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f4-141979.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f4-141979.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bsnwrhl.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bsnwrhl.html

Target Function Library Support for abs, min, max, and sign functions

• The rSqrt block can be configured to use either of two computation
methods, Newton-Raphson or Exact.

• The Trigonometric Function block, with Function set to sin or cos, can be
configured to use either of two approximation methods, CORDIC or None.

You can configure TFL table entries to replace these functions for one or all
of the available computation methods. For example, you could replace only
Newton-Raphson instances of the rSqrt function.

For more information, see Replace Math Functions Based on Computation
Method in the Embedded Coder documentation.

Target Function Library Support for abs, min, max,
and sign functions

Embedded Coder software now supports target function library customization
control for fixed-point abs, min, max, and sign functions.

For more information, see Register Code Replacement Libraries.

C++ Encapsulation Allowed for Referenced Models
in For Each Subsystems

In previous releases, due to a code generation limitation, code could not be
generated for a For Each Subsystem block under the following conditions:

• The For Each Subsystem block directly or indirectly contains a Model block.

• The Model block references a model for which C++ encapsulation is selected.

R2011a removes this limitation. You can now generate code for a For Each
Subsystem in which a referenced model uses C++ encapsulation.

Improved Code Generation for Portable Word Sizes

In the software-in-the-loop (SIL) simulation work flow, the model option
Enable portable word sizes allows you to take code intended for a specific

131

http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brc_o1j.html#bsziga7-1
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brc_o1j.html#bsziga7-1
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brc_o1j.html#brc_pba-1

R2011a

target platform and compile and run the same code on a MATLAB host
platform that uses different processor word sizes. R2011a enhances the code
generated for portable word sizes by inserting explicit casts to help protect
against integral promotion differences and other behavior differences between
host and target. This potentially can reduce the incidence of numerical
differences due to host/target behavior differences. For more information, see
Configure Hardware Implementation Settings for SIL and Portable Word
Sizes Limitations in the Embedded Coder documentation.

Improved Comments in the Generated Code

R2011a provides improvements to comment generation for better readability
and understanding of the generated code. Specifically, comments are located
closer to the referring code and reflect the intent of the code. An end comment
is now included at the end of a control flow block of code. For information on
customizing comments in the generated code, see Configure Code Comments
in Embedded System Code.

Replacement Data Types and Simulation Mode for
Referenced Models

To replace built-in data type names with user-defined data type names in the
generated code for a referenced model, you must set the Simulation mode
parameter for the Model block to one of the following:

• Normal

• Software-in-the-loop (SIL)

• Processor-in-the-loop (PIL)

For more information, see Data Types and Referenced Model Simulation
Modes in the Simulink documentation.

Changes for Embedded IDEs and Embedded Targets
Compatibility Considerations: Yes

• “Feature Support for Embedded IDEs and Embedded Targets” on page 133

132

http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/br86vhn.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/br86vhn.html#brr9t4r-6
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/br86vhn.html#brr9t4r-6
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/br5qpiq.html#f26784
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/br5qpiq.html#f26784
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/br542nf.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bsp24op-1.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bsp24op-1.html

Changes for Embedded IDEs and Embedded Targets

• “Execution Profiling during PIL Simulation” on page 134

• “Location of Blocks for Embedded Targets” on page 134

• “Location of Demos for Embedded IDEs and Embedded Targets” on page
136

• “Multicore Deployment with Rate-Based Multithreading” on page 137

• “Windows-Based Code Generation and Remote Build On Linux Target
(BeagleBoard)” on page 137

• “Changes to Frame-Based Processing” on page 137

• “New Support for Analog Devices Blackfin BF50x and BF51x Processors”
on page 139

• “Generate Optimized Fixed-Point Code for ARM Cortex-M3, Cortex-A8,
and Cortex-A9 Processors” on page 139

• “Support for Versions 5.0.6 and 5.1.6 of Green Hills® MULTI®” on page 139

• “Support for Texas Instruments Delfino C2834x Processors” on page 140

• “Ending Support for Altium TASKING in a Future Release” on page 141

• “Ending Support for Freescale MPC5xx in a Future Release” on page 141

• “Ending Support for Infineon® C166® in a Future Release” on page 141

• “Removed Methods and Arguments” on page 141

Feature Support for Embedded IDEs and Embedded Targets
The Embedded Coder software provides the following features as implemented
in the former Target Support Package and former Embedded IDE Link
products:

• Automation Interface

• Processor-in-the-Loop (PIL) Simulation

• Execution Profiling

• Execution Profiling during PIL Simulation

• Stack Profiler

• External Mode

133

R2011a

• Schedulers and Timing

• Makefile Generation (XMakefile)

• Target Function Library (TFL) Optimization

• Multicore Deployment for Rate Based Multithreading

Note You can only use these features in the 32-bit version of your
MathWorks products. To use these features on 64-bit hardware, install and
run the 32-bit versions of your MathWorks products.

Execution Profiling during PIL Simulation
During Processor-in-the-loop (PIL) simulation, you can profile synchronous
tasks in code running on the target. For more information, see Execution
Profiling during PIL Simulation

Location of Blocks for Embedded Targets
Blocks from the former Target Support Package product and Embedded IDE
Link product now reside under Embedded Coder in the Embedded Targets
block library, as shown.

134

http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bsyqw3q-1.html#bsyqw3q-1ecpdp
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bsyqw3q-1.html#bsyqw3q-1ecpdp

Changes for Embedded IDEs and Embedded Targets

Embedded Targets includes the following types of blocks:

• Host Communication

• Operating Systems

- Embedded Linux

- VxWorks

• Processors

- Analog Devices Blackfin

- Analog Devices SHARC

- Analog Devices TigerSHARC

- Freescale MPC55xx MPC74xx

- Freescale MPC5xx

- Infineon C166

135

R2011a

- Texas Instruments C2000

- Texas Instruments C5000

- Texas Instruments C6000

Location of Demos for Embedded IDEs and Embedded Targets
Demos from the former Target Support Package product and Embedded
IDE Link product now reside under Simulink Coder product help. Click the
expandable links, as shown.

136

Changes for Embedded IDEs and Embedded Targets

Multicore Deployment with Rate-Based Multithreading
You can deploy rate-based multithreading applications to multicore processors
running Embedded Linux and

VxWorks. This feature improves performance by taking advantage of
multicore hardware resources.

Also see the Running Target Applications on Multicore Processors user’s
guide topic.

Windows-Based Code Generation and Remote Build On Linux
Target (BeagleBoard)
You can generate a makefile project on a Windows host machine, transfer the
makefile project to an remote target running Linux, such as a BeagleBoard,
and then build the executable on the remote target.

Changes to Frame-Based Processing
Signal processing applications often process sequential samples of data at
once as a group, rather than one sample at a time. MathWorks documentation
refers to the former as frame-based processing and the latter as sample-based
processing. A frame is a collection of samples of data, sequential in time. To
perform frame-based processing in MathWorks products, you must have a
DSP System Toolbox license.

Historically, Simulink-family products that can perform frame-based
processing propagate frame-based signals throughout a model. The frame
status is an attribute of the signals in a model, just as data type and
dimensions are attributes of a signal. The Simulink engine propagates the
frame attribute of a signal with a frame bit, which can either be on or off.
When the frame bit is on, Simulink interprets the signal as frame-based, and
displays it as a double line, rather than as a single line.

Beginning in R2010b, MathWorks started to change the handling of
frame-based processing significantly. In the future, signal attributes will not
include frame status. Instead, individual blocks will control whether they
treat data inputs as frames or as samples.

137

http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bspewvw-1.html#bszx1ja-1

R2011a

To transition to this new paradigm, blocks that can perform sample- and
frame-based processing contain a new Input processing parameter that
specifies the processing behavior. You can set Input processing to Columns
as channels (frame based) or Elements as channels (sample based).
The third option, Inherited (this choice will be removed - see
release notes), is a temporary selection. This third option helps you
migrate your existing models from the old paradigm to the new paradigm.

In R2011a, the following Embedded Coder blocks received a new Input
processing parameter:

• C62X Real Forward Lattice All-Pole IIR

• C62X Complex FIR

• C62X General Real FIR

• C62X Real IIR

• C64X Real Forward Lattice All-Pole IIR

Compatibility Considerations

When you load an existing model in R2011a, blocks with the new Input
processing parameter shows a setting of Inherited (this choice will
be removed - see release notes). This setting enables your existing
models to work as expected until you upgrade them. Upgrade your models as
soon as possible.

To upgrade your existing models, use the slupdate function. This function
detects blocks that have Input processing set to Inherited (this choice
will be remove - see release notes). The function asks you whether to
upgrade each block. If you select yes, the function detects the status of the
frame bit on the input port of the block. If the frame bit is 1 (frames), the
function sets the Input processing parameter to Columns as channels
(frame based). If the bit is 0 (samples), the function sets the parameter to
Elements as channels (sample based).

A future release will remove the frame bit and the Inherited (this choice
will be removed - see release notes) option. At that time, if you
have not updated the model, the software automatically sets the Input

138

http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/c62xrealforwardlatticeallpoleiir.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/c62xcomplexfir.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/c62xgeneralrealfir.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/c62xrealiir.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/c64xrealforwardlatticeallpoleiir.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/slupdate.html

Changes for Embedded IDEs and Embedded Targets

processing parameter. The software uses the library default setting of the
block to select either Columns as channels (frame based) or Elements as
channels (sample based). If the library default setting does not match the
parameter setting in your model, your model will produce unexpected results.
Additionally, after the removal of the frame bit, you will no longer be able to
upgrade your models using the slupdate function. Therefore, upgrade your
existing modes using slupdate as soon as possible.

New Support for Analog Devices Blackfin BF50x and BF51x
Processors
You can now generate code for the following embedded processors when you
use Embedded Coder software:

• BF504

• BF504F

• BF506F

• BF512

• BF514

• BF516

• BF518

Generate Optimized Fixed-Point Code for ARM Cortex-M3,
Cortex-A8, and Cortex-A9 Processors
You can use new Target Function Libraries (TFLs) to generate efficient
fixed-point code for the ARM Cortex-M3, Cortex-A8, and Cortex-A9 processors.
These TFLs include GCC compiler extensions and intrinsic functions that
optimize the code Embedded Coder generates for these processors.

Support for Versions 5.0.6 and 5.1.6 of Green Hills MULTI
Support for Green Hills MULTI software now includes versions 5.0.6 and
5.1.6. For additional information about supported versions, see the Support
for Green Hills MULTI topic online.

139

http://sharepoint/SearchCenter/results.aspx?k=marshall&s=Everything
http://sharepoint/SearchCenter/results.aspx?k=marshall&s=Everything

R2011a

Support for Texas Instruments Delfino C2834x Processors
You can now generate code for the following embedded processors when
you use Embedded Coder software with Texas Instruments Code Composer
Studio software:

• C28341

• C28342

• C28343

• C28344

• C28345

• C28346

The new C2834x (c2834xlib) block library contains the following blocks:

• C2000 CAN Calibration Protocol

• C280x/C2802x/C2803x/C28x3x/c2834x GPIO Digital Input

• C280x/C2802x/C2803x/C28x3x/c2834x GPIO Digital Output

• C280x/C2802x/C2803x/C28x3x/C2834x I2C Receive

• C280x/C2802x/C2803x/C28x3x/C2834x I2C Transmit

• C280x/C2802x/C2803x/C28x3x/c2834x SCI Receive

• C280x/C2802x/C2803x/C28x3x/c2834x SCI Transmit

• C280x/C2802x/C2803x/C28x3x/c2834x SPI Receive

• C280x/C2802x/C2803x/C28x3x/c2834x SPI Transmit

• C280x/C2802x/C2803x/C28x3x/c2834x Software Interrupt Trigger

• C28x Watchdog

• C280x/C2803x/C28x3x/c2834x eCAN Receive

• C280x/C2803x/C28x3x/c2834x eCAN Transmit

• C280x/C2802x/C2803x/C28x3x/c2834x eCAP

• C280x/C2802x/C2803x/C28x3x/c2834x ePWM

• C280x/C2803x/C28x3x/c2834x eQEP

140

http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/bqnb76d-1.html#bsv7x_z-1
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/c2000cancalibrationprotocol.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/c280xc2802xc2803xc28x3xc2834xgpiodigitalinput.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/c280xc2802xc2803xc28x3xc2834xgpiodigitaloutput.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/c280xc2802xc2803xc28x3xc2834xi2creceive.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/c280xc2802xc2803xc28x3xc2834xi2ctransmit.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/c280xc2802xc2803xc28x3xc2834xscireceive.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/c280xc2802xc2803xc28x3xc2834xscitransmit.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/c280xc2802xc2803xc28x3xc2834xspireceive.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/c280xc2802xc2803xc28x3xc2834xspitransmit.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/c280xc2802xc2803xc28x3xc2834xsoftwareinterrupttrigger.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/c28xwatchdog.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/c280xc2803xc28x3xc2834xecanreceive.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/c280xc2803xc28x3xc2834xecantransmit.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/c280xc2802xc2803xc28x3xc2834xecap.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/c280xc2802xc2803xc28x3xc2834xepwm.html
http://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/c280xc2803xc28x3xc2834xeqep.html

Changes to ver Function Product Arguments

Ending Support for Altium TASKING in a Future Release
Support for the Altium TASKING IDE will end in a future release of the
Embedded Coder product.

Ending Support for Freescale MPC5xx in a Future Release
Support for the Freescale MPC5xx processor family will end in a future
release of the Embedded Coder product.

Ending Support for Infineon C166 in a Future Release
Support for the Infineon C166 processor family will end in a future release of
the Embedded Coder product.

Removed Methods and Arguments
Deprecated the type property for the Code Composer Studio IDE object. For
example, entering the following text generates an error message:

infolist = IDE_Obj.list(type)

Changes to ver Function Product Arguments
Compatibility Considerations: Yes

The following changes have been made to ver function arguments related to
embedded code generation products:

• The new argument 'embeddedcoder' returns information about the
installed version of the Embedded Coder product.

• The argument 'ecoder', which previously returned information about the
installed version of the Real-Time Workshop Embedded Coder product, no
longer works. The software displays a “not found” warning.

For more information about using the function, see the ver documentation.

141

http://www.mathworks.com/help/releases/R2012a/techdoc/ref/ver.html

R2011a

Compatibility Considerations

If a script calls the ver function with the 'ecoder' argument, update the
script appropriately. For example, you can update the ver call to use the
'embeddedcoder' argument.

New and Enhanced Demos

The following demos have been added in R2011a:

Demo... Shows How You Can...

coderdemo_tfl Use target function libraries (TFLs) to replace
operators and functions in code generated by
MATLAB Coder.

rtwdemo_code_coverage_script Generate model coverage and code coverage reports,
and use these reports to compare model coverage
and code coverage results for parts of a model.

rtwdemo_pmsmfoc_script Perform system-level simulation and algorithmic
code generation using Field-Oriented Control for a
Permanent Magnet Synchronous Machine.

The following demos have been enhanced in R2011a:

Demo... Now...

vipstabilize_fixpt_beagleboard Uses the new Video Capture block to simulate
or capture a video input signal in the Video
Stabilization demo.

142

Check bug reports for issues and fixes

Check bug reports for issues and fixes

Software is inherently complex and is not free of errors. The output of a code
generator might contain bugs, some of which are not detected by a compiler.
MathWorks reports critical known bugs brought to its attention on its Bug
Report system at www.mathworks.com/support/bugreports/. Use the Saved
Searches and Watched Bugs tool with the search phrase ‘‘Incorrect Code
Generation’’ to obtain a report of known bugs that produce code that might
compile and execute, but still produce wrong answers.

The bug reports are an integral part of the documentation for each release.
Examine periodically all bug reports for a release, as such reports may
identify inconsistencies between the actual behavior of a release you are using
and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and
validation strategy to identify potential bugs in your design, code, and tools.

Search R2011a Bug Reports
Known Bugs for Incorrect Code Generation:
www.mathworks.com/support/bugreports/?product=ALL&release=R2011a
&keyword=Incorrect+Code+Generation

All Known Bugs for This Product:
www.mathworks.com/support/bugreports/?release=R2011a&product=EC

143

http://www.mathworks.com/support/bugreports/
http://www.mathworks.com/support/bugreports/?product=ALL&release=R2011a&keyword=Incorrect+Code+Generation
http://www.mathworks.com/support/bugreports/?product=ALL&release=R2011a&keyword=Incorrect+Code+Generation
http://www.mathworks.com/support/bugreports/?release=R2011a&product=EC

	toc
	R2013b
	Code Generation from MATLAB Code
	Software-in-the-loop verification for MATLAB Coder
	Custom generated identifiers for emxArray utility functions

	Model Architecture and Design
	Enhanced modeling of AUTOSAR runnables and modes, and improved A
	Enhanced modeling and simulation of AUTOSAR multiple runnables
	Enhanced ARXML import of AUTOSAR software component internal beh
	Ability to model AUTOSAR mode receiver ports and events
	AUTOSAR dual-scaled parameter
	Programmatic interface for configuring AUTOSAR properties and Si

	Reorganization of Model Advisor Embedded Coder checks
	Model Advisor fixed-point checks with additional coverage and op
	Protected model Web view
	RTW.AutosarInterface class to be removed in a future release
	Subsystem methods of arxml.importer class to be removed in a fut

	Data, Function, and File Definition
	Simplified global types file rtwtypes.h with invariant content
	C++ encapsulation support for name space control and template-ba
	Name space control for scoping C++ encapsulated model classes
	Template-based customization of encapsulated C++ header and sour

	Shared utility naming control
	Expanded support for identifier names

	Code Generation
	Support for AUTOSAR release 4.0.3 XML and generated code
	Indent style and size control for code generation
	Subsystem functions return value in generated code
	Model reference step function void input and output arguments

	Deployment
	ARM Cortex-M optimized code with STM32F4-Discovery board example
	Support package for ARM Cortex processors
	Support package for STMicroelectronics STM32F4-Discovery Board

	Wind River VxWorks 6.9 support
	Compatibility Considerations

	Support package for Texas Instruments C2000 processors
	Compatibility Considerations

	Coder Target pane in Configuration Parameters dialog box
	ZedBoard hardware support
	Simplified multi-instance code interface and dynamic memory allo

	Performance
	Reusable custom storage class to reduce root I/O memory
	Subsystem functions reused independently of output connection

	Verification
	SIL and PIL support fixed-point data types wider than 32 bits
	SIL and PIL protected model support
	Code execution profiling improvements
	Standalone code generation with function profiling
	Display of code section invocations
	SampleOffset and SamplePeriod removed

	Check bug reports for issues and fixes
	Search R2013b Bug Reports

	R2013a
	Code Generation from MATLAB Code
	Improved code replacement traceability for MATLAB code generatio
	Static code metrics report for MATLAB Coder

	Model Architecture and Design
	AUTOSAR user interface and round trip ARXML file import and expo
	Improved graphical user interfaces for AUTOSAR configuration
	Round-trip preservation of AUTOSAR elements and UUIDs

	Code generation for variable-size scalar signals

	Data, Function, and File Definition
	Shortened system-generated identifier names
	Improved data initialization with custom storage classes
	Default specification for global types
	Subsystem block parameter Function packaging option renamed

	Code Generation
	Model Advisor checks for code generation

	Deployment
	Concurrent execution API to target embedded multicore platforms
	Semaphore and mutex code replacement for multicore target enviro
	Hardware timer function replacement

	Hardware configuration relocation from Target Preferences block
	Downloadable support and blocks for Analog Devices DSPs
	Texas Instruments C2000 Clocking Options
	Support for Texas Instruments C2802x and Texas Instruments C2803
	Downloadable support and blocks for Xilinx Zynq-7000 platform
	Support ending for Eclipse IDE in a future release
	Support ending for remoteBuild method in a future release

	Performance
	Optimized function arguments for nonreusable subsystems
	Reduced data copies for tunable parameter expressions
	Removal of unused global variables

	Verification
	Debugging during SIL simulations
	Simulation of multiple SIL Model blocks in a top model
	API for testing rtiostream communications
	SIL and PIL support for targets with multicore processors
	Additional code annotation for justifying Polyspace checks
	Code execution profiling improvements
	Comprehensive measurement and reporting of function execution ti
	Viewing and comparing execution time plots with the Simulation D
	Specification of hardware timer through the Code Replacement Too

	Code-to-model traceability links for reusable subsystems in libr
	Check bug reports for issues and fixes
	Search R2013a Bug Reports

	R2012b
	Cyclomatic complexity measurement in static code metrics report
	Custom code substitution for MATLAB functions using code replace
	SIL and PIL support for signal logging, encapsulated C++, and AU
	Signal logging for SIL and PIL simulations
	Use SIL and PIL simulations to verify encapsulated C++ code
	Improved SIL and PIL verification for AUTOSAR-compliant code

	AUTOSAR 4.0 nonscalar data support
	Code annotation for justifying Polyspace checks
	Texas Instruments Code Composer Studio IDE 5.1 support
	External mode support for ERT targets with static main
	Downloadable support for Green Hills MULTI
	Support for Texas Instruments C2806x processors
	Performance enhancement of Simulink data objects
	AUTOSAR software component import and export enhancements
	Import validation
	Faster import and export of arxml files
	Explicit access mode for AUTOSAR Sender and Receiver ports
	Import port-based calibration parameters

	Highlight virtual blocks in model Web view of code generation re
	Code Execution Profiling Improvements
	Updated Code Execution Profiling API
	New Properties and Methods
	Functionality Being Removed or Changed

	Code Execution Profiling Supports Single Object Output

	Incremental Compilation with Changes in Code Coverage Settings
	Check bug reports for issues and fixes
	Search R2012b Bug Reports

	R2012a
	AUTOSAR Enhancements
	AUTOSAR Release 4.0
	Support for Schema 2.0 Removed

	Code Efficiency Enhancements
	For Each Subsystem Loop Bound Passed by Value
	Fully Inlined S-functions from Legacy Code Tool
	Element-Wise Operations as Inputs to Intrinsic Functions

	Enhancements to Custom Storage Classes in Simulink and mpt Packa
	Code Generation Report Includes Simulink Web View
	LDRA Testbed Code Coverage Annotations in Code Generation Repor
	Generated Identifiers Enhancements
	Simplified Identifiers for Model Reference Code
	Consistent Identifiers for Comparing Generated Code

	Code Replacement Enhancements
	Target Function Libraries Renamed to Code Replacement Libraries
	Enhanced Code Replacement Traceability
	Code Replacement Support for Simulink Matrix Division and Invers
	Code Replacement Support for MATLAB Coder fix, hypot, round, and
	Integer Functions Now Return Real-World Values

	SIL and PIL Enhancements
	SIL and PIL Test Harness Files in Code Generation Report
	PIL Support for Code Coverage with LDRA Testbed
	Seamless Switching Between SIL and PIL for Top-Model and Model B
	Enhanced Hardware Implementation Support
	Host and Target Floating Point Data Type Sizes
	Word-Addressable Targets

	Top-Model Output Limitations Removed
	Model Block SIL/PIL Support for Absolute Time

	Changes for ERT and ERT-Based Targets
	Changes for Embedded IDEs and Embedded Targets
	Support Added for GCC 4.4 on Host Computers Running Linux with E
	Support Added for Using Processor-in-the-Loop (PIL) with Serial
	Support Removed for Freescale MPC5xx
	Limitation: Parallel Builds Not Supported for Embedded Targets

	New and Enhanced Demos
	Check bug reports for issues and fixes
	Search R2012a Bug Reports

	R2011b
	Static Code Metrics in Code Generation Report
	AUTOSAR Enhancements
	Import and Export of AUTOSAR Sensor/Actuator Components
	Improved Simulink Library Support for Multiple Runnables
	AUTOSAR Schema Version 3.2
	Export AUTOSAR XML as Single File

	SIL and PIL Enhancements
	Code Execution Profiling of Functions in Subsystems and Model Bl
	Code Coverage with LDRA Testbed
	BitField and GetSet Custom Storage Classes
	Model Blocks with Variable-Size Signals
	Verification of Generated C++ Code

	Generate Multitasking Code for Concurrent Execution on Multicore
	Changes for Embedded IDEs and Embedded Targets
	64-bit Version of Embedded Coder Supports Analog Devices VisualD
	Support Added for Wind River VxWorks 6.8
	Support Added for Serial Communications Interface with Processor
	New Target Function Library for Intel IPP/SSE (GNU)
	Support Added for Single Instruction Multiple Data (SIMD) with A
	Support Removed for Altium TASKING
	Support Removed for Infineon C166
	Support Ending for Green Hills MULTI in a Future Release
	Support Ending for Freescale MPC5xx in a Future Release

	Saturation Control of Stateflow Data
	Custom Storage Class Properties for Managing Data Ownership and
	Export Data Declarations to Shared Header File for Code Generati
	Target Function Library Code Replacement Enhancements
	Code Replacement Tool for Creating and Managing TFL Tables
	Ability to Align Data Objects to TFL-Specified Boundaries to Boo
	Support for Replacing Element-wise Matrix Multiply

	Code Generation Enhancements
	Redundant Condition Checks
	Loop Fusion
	Invariant Condition Check Lifting
	Parameter Pooling for Stateflow and Interpreted MATLAB Function
	Readability Improvement for Reusable Subsystem Input and Output

	Enhanced Code Generation Optimization Using Minimum and Maximum
	New Model Advisor Check for Code Efficiency of Logic Blocks
	Control of Default Case Generation for Switch Statements in Gene
	Improvement to Build Process for Conflicting Identifiers
	Update to Code Generation Verification Class cgv.Config
	License Names Not Yet Updated for Coder Product Restructuring
	New and Enhanced Demos
	Check bug reports for issues and fixes
	Search R2011b Bug Reports

	R2011a
	Coder Product Restructuring
	Product Restructuring Overview
	Resources for Upgrading from Real-Time Workshop Embedded Coder
	Migration of Embedded MATLAB Coder Features to MATLAB Coder
	Migration of Embedded IDE Link and Target Support Package Featur
	Interface Changes Related to Product Restructuring
	Simulink Graphical User Interface Changes

	Data Management Enhancements and Changes
	Memory Section Enhancements
	No Longer Able to Set RTWInfo or CustomAttributes Property of Si
	Parts of Data Class Infrastructure Not Available
	No Longer Generating Pragma for Data Defined with Built-In Stora
	Simulink.CustomParameter and Simulink.CustomSignal Data Classes

	AUTOSAR Enhancements
	Calibration Parameters
	Multiple Runnables from Virtual Subsystems
	Support for Code Descriptor Elements

	SIL and PIL Enhancements
	Code Execution Profiling
	PIL Block Parameter Tuning
	Top-Model SIL/PIL and PIL Block Parameter Initialization
	Model Block Parameter Tuning and Model Initialization

	Code Generation Enhancements
	Improved Code for Data Store Memory In-place Assignment
	Improvements to Target Function Library Replacements
	Improved Loop Fusion
	Improved Array Indexing
	Improvement on Matrix Parameter Pooling
	Readability Improvements Involving Data References

	Code Generation Verification (CGV) API Updates
	Support for Adding Multiple Callback Functions
	New Functionality Added to the cgv.CGV Class

	MISRA-C Code Generation Objective
	New Model Advisor Check for Code Efficiency of Lookup Table Bloc
	Enhanced Code Generation Optimization
	Target Function Library Replacement Based on Computation Method
	Target Function Library Support for abs, min, max, and sign func
	C++ Encapsulation Allowed for Referenced Models in For Each Subs
	Improved Code Generation for Portable Word Sizes
	Improved Comments in the Generated Code
	Replacement Data Types and Simulation Mode for Referenced Models
	Changes for Embedded IDEs and Embedded Targets
	Feature Support for Embedded IDEs and Embedded Targets
	Execution Profiling during PIL Simulation
	Location of Blocks for Embedded Targets
	Location of Demos for Embedded IDEs and Embedded Targets
	Multicore Deployment with Rate-Based Multithreading
	Windows-Based Code Generation and Remote Build On Linux Target (
	Changes to Frame-Based Processing
	New Support for Analog Devices Blackfin BF50x and BF51x Processo
	Generate Optimized Fixed-Point Code for ARM Cortex-M3, Cortex-A8
	Support for Versions 5.0.6 and 5.1.6 of Green Hills MULTI
	Support for Texas Instruments Delfino C2834x Processors
	Ending Support for Altium TASKING in a Future Release
	Ending Support for Freescale MPC5xx in a Future Release
	Ending Support for Infineon C166 in a Future Release
	Removed Methods and Arguments

	Changes to ver Function Product Arguments
	New and Enhanced Demos
	Check bug reports for issues and fixes
	Search R2011a Bug Reports

